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On-line social interactions
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@ Social media revolution.

On-line social
communities

@ Face-to-face vs. computer mediated communication.

@ Web portals:

o Blog and news sites: BBC Blog, B92 Blog, Digg,
Blogspot, Wordpress,...

@ Social networks: MySpace, Facebook, Twitter,
LinkedIn,...

o Consumer and product review portals: Amazon,
IMDb,...

Studies of phenomena and behaviors at scales that
before were not possible!



Data from BBC Blog and Digg
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PR Detail records of human activity:
communifes @ High resolution in time.
@ User:unique ID; details of actions.

@ Posts and Comments: unique ID; ID of related users
and posting times; Comment-on-Comment; texts for
emotional classification.

@ Users + Posts and Comments - connected network of
techno-social interactions.

@ Type of analysis: time series statistics; network
analysis (topology and user communities) and
emotional avalanches.



Emotions in text
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Online sodial @ Text of Comments (Posts) collected as data.

communities

@ Text = content, keywords, emotions (opinions)
e Different ways of emotion classification:

@ Different scales of emotions:[0.2cm]
o Binary scale - e € {—1,0, 1} (O=objective, 1=positive
and -1= negative).
o Discrete double scale - e_ € {-5,...,—1} (degree of

negative emotions) and e, € {1,...,5} (degree of
positive emotions).




Data size
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On-line social
communities

Nc = 1646153

Size Emotional content
Ny = 21426
BBC Np = 3972 YES NO
Nc = 80873
Ny = 484986
DIGG | Np = 1195808 YES YES




Bipartite network

Data within the specified time interval are mapped onto
bipartite graph.
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Network
representation

and topology 2

)} Node representation:
[ @ User e
%

@ Post or Comment: B
(negative), W (positive)
and O (objective)

Link rules:

@ User reading a
Post(Comment): [0 — e.

@ User posting a
Post(Comment): ¢ — (.

Partitions: Users and
Post&Comments
Ny + Np + N¢



Weighted bipartite networks
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*
Network . .
representation -
and topology

Partitions: Users and
Posts
Ny + Np

Node representation:
@ User e
@ Post: B (Qa < —0.25), W
(Qav > —025) and O
(IQav| < 0.25)
Link rules:
@ User left a comment on (is
author of) Post: ¢ — [1.

@ Link weight - number of
Comments user left on
Post.

Phys. Eur. J. B, Vol. 73, 293-301, (2010)



Monopartite weighted network
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Network size: Ny (Np)

Projection of bipartite network to one of partitions based on

@ Nodes - Users (Post).

o Cf (Cy) - number of
common Posts (Users)
per pair of Users (Posts).

Mitrovi¢, Paltoglou, and
Tadi¢, DRAFT, 2010



Topological properties
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EV. Spectral analysis method
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DATA=-bipartite Network = projected Network(weighted
links=-commons,number of comments)

EV. Spectral analysis (Laplacian) = E. Vector -scatterplots
= Community branches=-! (= ID of Nodes = ID of Posts)

Community
structure

C:
Lj =6 — —/’f i
Ci, Wy, | = Z Cj

)

[spectra of modular networks: Phys.Rev.E vol. 80, 026123 2009]



User communities BBC Popular post
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Users related to BBC popular Posts (ncom > 100).
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Communities of posts and users

Popular discussions (more than 50% C-on-C) and Users
(i > 100)

Ny + Np = 4918 + 3848

Community o
structure

Weighted bipartite network



Emotions on Popular stories
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Emotions and
temporal
patterns

Patterns of User emotional behaviour
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Community evolution
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Emotions and
temporal
patterns

Disscussion driven popular BBC popular Blogs
Digg stories




Emotions and
temporal
patterns

Emotional time series
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Self-oganized criticality

wuuend  Distribution of avalanche sizes and time intervals between
two successive avalanches - strong evidence of SOC.
BBC popular Blogs Popular ddDigg posts
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Summary
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@ Social Media data can be represented by bipartite
networks and their projections.

@ Systematical detection of communities based on
Eigenvalue Spectral Analysis Method.

@ Evolution of communities related to emotional content
ST e of related comments.

Conclusion . . .
@ Analysis of time series of number of comments
indicates SOC.
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