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In this paper, building on a previous analysis �I. Vidanović, A. Bogojević, and A. Belić, preceding paper,
Phys. Rev. E 80, 066705 �2009�� of exact diagonalization of the space-discretized evolution operator for the
study of properties of nonrelativistic quantum systems, we present a substantial improvement to this method.
We apply recently introduced effective action approach for obtaining short-time expansion of the propagator up
to very high orders to calculate matrix elements of space-discretized evolution operator. This improves by
many orders of magnitude previously used approximations for discretized matrix elements and allows us to
numerically obtain large numbers of accurate energy eigenvalues and eigenstates using numerical diagonaliza-
tion. We illustrate this approach on several one- and two-dimensional models. The quality of numerically
calculated higher-order eigenstates is assessed by comparison with semiclassical cumulative density of states.
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I. INTRODUCTION

In first paper in this series �1� we analyzed in detail the
earlier introduced method �2–5� for studying properties of
quantum systems based on the diagonalization of real-space-
discretized evolution operator, as well as the errors associ-
ated with the discretization process. This analysis provided
us with a better understanding of this method that can be
used to numerically calculate energy eigenvalues and eigen-
states of few-body physical systems. We have shown that
errors due to the finite discretization step � used for space
discretization vanish exponentially with 1 /�2 for short time
of propagation. This highly outperforms the usual �polyno-
mial in �2� behavior of errors in approaches with diagonal-
ization of space-discretized Hamiltonians �6–9�. In addition,
derived analytic estimates for discretization errors provide an
easy way for taking into account such errors and eliminating
them in practical applicatyions. For these reasons, the ap-
proach �2� now becomes the preferred method to study sys-
tems with few degrees of freedom, for which it can be effi-
ciently and straightforwardly implemented. In our previous
paper we have also analyzed estimates for errors due to the
introduction of the space cutoff L, providing simple criterion
for assessing and eliminating errors of this type.

In the previous paper we have also demonstrated that time
of propagation t, a parameter introduced by this method, is a
source of a new type of error that comes about from using
short-time approximations. This problem was not addressed
at all in Ref. �2�. It has recently been discussed �10–12� and
will be the main focus of the present paper. Errors associated
with the time of evolution parameter t must be carefully
taken into account and may substantially limit the precision
of numerical calculation in the diagonalization method. In
this paper we address this problem by applying the recently
introduced effective action approach �13–17� to systemati-
cally improve approximations for transitions amplitudes.
This in turn leads to the many orders of magnitude decrease

in errors in obtained energy eigenvalues, as shown in this
paper. We demonstrate on several lower-dimensional models
how use of higher-order effective actions significantly re-
duces numerical errors and systematically improves obtained
energy eigenvalues and eigenstates.

Together with the results from our previous paper, this
paper completes the analysis of the method based on the
diagonalization of transition amplitudes, providing us with
necessary analytical knowledge to estimate errors of all types
associated with this method and to numerically very accu-
rately calculate large numbers of energy eigenvalues and
eigenstates. This invites various applications of the method
to the study of few-body quantum systems, some of which
are discussed throughout the paper.

The text is organized as follows: in Sec. II we briefly
review the effective action approach and demonstrate how it
can be used for numerical calculation of transition ampli-
tudes. In Secs. III and IV we apply the exact diagonalization
method �1,2� improved by the use of effective actions to the
numerical study of several one- and two-dimensional mod-
els. In these sections we also show how the number of reli-
able energy eigenvalues can be estimated using comparison
of numerically obtained results with semiclassical cumula-
tive density of states for higher-lying eigenstates. Section V
gives our concluding remarks and some relevant applications
of this approach.

II. EFFECTIVE ACTIONS

To introduce the notation, we first briefly outline the di-
agonalization method �2�, presented in more detail in Sec. II
of our previous paper �1�. After discretizing the continuous
space and replacing it with a grid defined by a discretization
step �, all the quantities are defined only on a discrete set of
coordinates xn=n�, where n�Z is any integer number. For a

physical system with Hamiltonian Ĥ, the evolution operator

�in the imaginary time formalism� is defined as exp�−tĤ�,
where t is the time of evolution. Transition amplitudes are
defined as*aleksandar.bogojevic@scl.rs
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A�x,y ;t� = �x�e−tĤ�y� , �1�

and give the discretized evolution operator matrix elements

Anm�t� = �d · A�n�,m�;t� , �2�

where d is the number of spatial dimensions. The eigenvec-
tors of such a matrix correspond to the space-discretized
eigenfunctions of the original Hamiltonian, while the eigen-
values are related to the eigenvalues of the Hamiltonian and
can be written as

e−tEk��,L,t�, �3�

where we emphasize the dependence of the numerically cal-
culated eigenvalues on all discretization parameters. The
number of obtained eigenvalues and eigenstates is equal to
the linear size of matrix A, which has to be finite when we
represent any physical system on the computer. Typically, we
restrict the range of indices n, m to the finite interval −N
�n ,m�N, so that the number of points in the grid is S
= �2N�d. Note that the range can be adjusted so that the size S
is an odd number. In Eq. �3� we have also introduced the
space cutoff L, which corresponds to the restriction on the
range of grid-point indices n ,m, and is given by L=N�.

As we can see, the precise calculation of transition ampli-
tudes is essential for practical applications of this method. In
Ref. �2� all calculations are based on the naive approxima-
tion for transition amplitudes

A�1��x,y ;t� �
1

�2�t�d/2exp	−
�x − y�2

2t
− t

V�x� + V�y�
2


 ,

�4�

which yields energy eigenvalues correct only to order O�t�,
and is for this reason designated by A�1�. If one uses the naive
approximation for transition amplitudes, then times of propa-
gation must be very short for errors to be small enough.
Practically, even for short times of propagation, such errors
are always much larger than the errors due to discretization,
and therefore significantly limit the applicability of the
method. In addition to this, the results obtained in our previ-
ous paper �1� on exactly solvable models suggest that longer
times of propagation generally give smaller errors in the di-
agonalization approach. The trade-off between these effects
and its implications on numerical results has been docu-
mented in �2�.

To address this, in principle one can use Monte Carlo
simulations �18,19� to calculate amplitudes A to high preci-
sion. Although this can effectively resolve the problem in
many cases, it is often numerically very expensive. More
importantly, resorting to the use of Monte Carlo practically
limits further analytical approaches. We will instead use the
recently introduced effective action approach �13–17� that
gives closed-form analytic expressions A�p��x ,y ; t� for transi-
tion amplitudes which converge much faster,

A�p��x,y ;t� = A�x,y ;t� + O�t p+1/t d/2� , �5�

where p is an integer number corresponding to the order of
the effective action used, i.e., order of energy eigenvalue
errors tp. For a general many-body theory effective actions

up to p=10 have been derived, while for a specific models
much higher values can be obtained, e.g., for the anharmonic
oscillator and other polynomial interactions, for which effec-
tive actions have been calculated up to p=144. So, if p is
high enough, it is sufficient that the time of evolution is less
than the radius of convergence of the above series �t��c
�1� and errors in calculated values of transition amplitudes
will be negligible. This is illustrated in Fig. 1 for the case of
a quartic anharmonic oscillator. The use of high-order expan-
sion in the time of propagation of amplitudes will allow us to
use times of evolution up to �c, which are much longer than
the typical times one can use with the naive �p=1� ampli-
tudes. At the same time, the expansion up to very high orders
substantially decreases the errors associated with t, and may
practically eliminate them.

The analytic expressions for higher-order approximations
for transition amplitudes are based on the notion of effective
actions, which are introduced by casting the solution of the
time dependent Schrödinger equation for the transition am-
plitude in the form

A�x,y ;t� =
1

�2�t�d/2e−�x − y�2/2t−tW��x+y�/2,x−y;t�, �6�

where W�x ,� ; t� is the effective potential, with the following
boundary behavior:

lim
t→0

W�x,�;t� = V�x� . �7�

As shown previously, the effective potential W�x ,� ; t� is
regular in the vicinity of t=0, enabling us to represent it in
the form of a power series in short time of propagation t. The
coefficients in this series are functions of the potential and its
derivatives. The truncation of the series for the effective po-
tential up to order tp−1, designated by W�p−1��x ,� ; t�, gives
the expansion of the transition amplitude accurate to
t p+1 / t d/2,

A�p��x,y ;t� =
1

�2�t�d/2e−�x − y�2/2t−tW�p−1���x+y�/2,x−y;t�. �8�

The analytic expressions for higher-order effective actions
therefore yield analytic approximations for amplitudes with
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FIG. 1. �Color online� Transition amplitude A�p��0,0 ; t� as a
function of the time of propagation t, calculated analytically using
different levels p of the effective action. The plot is for the quartic
anharmonic potential V�x�= 1

2 M�2x2+ g
24x4, with parameters M =�

=1, g=10.
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the convergence behavior given by Eq. �5�. We emphasize
that although the structure of the effective action solution
form �6� is motivated by the path-integral formalism, the
expression for amplitudes obtained in the above approach
contain no integrals and can be used straightforwardly as
long as the time of propagation is below the radius of con-
vergence of the short-time series expansion.

For the exactly solvable case of a harmonic oscillator one
finds that the radius of convergence is �c=� /�. The radius
of convergence is simply the distance in the complex time
plain from the origin to the nearest singularity of the propa-
gator. For the harmonic oscillator the singularities are located
at 	ik� /�, k�N. The consequence of these singularities is
that the power series for the effective potential W�x ,� ; t�
converges only for t��c. It is often difficult to analytically
determine the radius of convergence of the short-time expan-
sion of the transition amplitude. However, numerically this is
a very simple problem, since outside of the radius of conver-
gence the calculated approximative amplitudes rapidly tend
to infinity �for levels p for which the effective potential is not
bounded from below; see Ref. �20�� or to zero with the in-
crease in p. From Fig. 1 we easily estimate radius of conver-
gence to be �c�1 for a quartic anharmonic potential V�x�
= 1

2 M�2x2+ g
24x4, with parameters M =�=1, g=10. Such nu-

merical determination of the radius of convergence for a
given level p is always done before practical use of the ef-
fective potential. Note that we are not interested in the pre-
cise value of �c, just in its rough estimate which will allow us
to safely use times of propagation below �c.

To conclude the section, let us stress that the effective
action approach can be used only for sufficiently smooth
potentials, i.e., those that have derivatives of the required
order, corresponding to the level p of effective action, as
discussed in Ref. �13�. For potentials that do not fulfill this
condition �e.g., stepwise potentials�, the effective action ap-
proach cannot be directly used. However, one can replace the
original potential with some of its smooth deformations, per-
form numerical calculations, and at the end take the limit of
the deformation parameter in which the original potential is
recovered. The numerical results obtained in such a way
must be carefully cross-checked using other methods.

III. NUMERICAL RESULTS FOR d=1 MODELS

In this section we apply the approach outlined above to
several d=1 models and demonstrate its substantial advan-
tages for numerical studies of eigenstates of various physical
systems. We numerically analyze all sources of errors present
in this approach due to discretization parameters L and �, as
well as the time of propagation parameter t. We present the
obtained numerical results for energy eigenvalues and eigen-
states. We also assess the quality of the obtained energy
spectra through comparison with the semiclassical approxi-
mation for the density of states, which should be accurate at
least for the higher regions of the spectrum.

The first model we study is the quartic anharmonic oscil-
lator with potential

V�x� =
1

2
M�2x2 +

g

24
x4. �9�

For this potential the effective actions have been previously
derived up to p=144 �21�, and here we will use various
levels p to illustrate the dependence of errors on the level p
used in calculations.

Figure 2 presents the analysis of various errors in the
ground energy calculation for a particular choice of param-
eters of the potential M =�=1, g=48. The spectrum of the
potential is calculated by the numerical diagonalization of
the space-discretized transition amplitude matrix. The errors
are estimated using the exact value of the ground energy
calculated elsewhere �22� by a different technique to very
high precision. The dependence of the error related to the
introduction of the space cutoff L is illustrated in Fig. 2�a�,
while Fig. 2�b� gives the dependence of ground energy errors
on the time of propagation parameter t for various values of
the discretization step �. On both graphs we see the results
obtained with effective actions of different levels p. Figure
2�b� clearly shows that the errors due to the time of propa-
gation are proportional to tp, as expected when we use the
effective action of the level p. The errors in eigenvalues are
of the same order as errors in calculation of individual matrix
elements �to a normalization factor�, and for this reason we
see the typical tp behavior of ground and higher energy ei-
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FIG. 2. �Color online� �a� Deviations from the ground energy �E0
�p��� ,L , t�−E0

exact� as a function of the space cutoff L and �b� as a function
of the time t. The ground energy is obtained using different levels p=1,3 ,5 ,7 ,9 ,11,13 �top to bottom� of the effective action for the quartic
anharmonic potential, with parameters M =�=1, g=48, �=0.05, t=0.02 on graph �a�, and L=4 on graph �b�. The exact ground energy
E0

exact=0.95156847272950001114693. . . is taken from Ref. �22�. Dashed lines on the graph �b� correspond to the known discretization error
�1�.
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genvalues. It is already now evident that the use of higher-
order effective actions increases the accuracy of numerically
calculated energy eigenstates for many orders of magnitude.
This is the most important contribution of this paper.

The L dependence of the error is analytically known
�1,23,24�. The saturation of errors in Fig. 2�a� for a given
level p corresponds to a maximal precision that can be
achieved with that p, i.e., denotes the value of L for which
errors introduced by other sources become larger than the
error due to the finite value of the space cutoff. This can be
easily seen if we combine the data from both graphs. For
example, the level p=9 effective action has the saturated
value of the error of the order of 10−14. For t=0.02 we find
that the error due to the time of propagation is of the same
order if one uses sufficiently fine discretization ��=0.05�.
Therefore, the saturation of errors on the left-hand graph are
caused by the errors due to the time of propagation. How-
ever, if one uses discretization which is not sufficiently fine,
the saturation of errors can be also caused by the discretiza-
tion effects. Such effects can be also analytically estimated to
be proportional to −2 exp�−2�2t /�2�cosh��2�k+1�t /L�� / t,
as we have shown in the previous paper �1�.

Table I gives low-lying energy eigenvalues of the anhar-
monic oscillator for a particular choice of the parameters of
the potential and discretization parameters. In principle, one
can achieve arbitrary precision by the use of appropriately
chosen discretization parameters. Of course, for arbitrary
precision calculations one has to use one of the software
packages able to support such calculations. For example, we
have used MATHEMATICA �25� in order to be able to achieve
high-precision results presented on the above graphs. The
important conclusion is that even for very moderate values of
discretization parameters, the use of higher-order effective
actions leads to very small errors, which may be practically
implemented with minimal computing resources.

The analysis of errors such as the one presented in Fig. 2
is sufficient to estimate optimal values of discretization pa-

rameters. In general, for a desired numerical precision of
energy eigenvalues, the optimal values of parameters are
chosen so that all types of errors are approximately the same.
The overall error is always dominated by the largest of all
errors, and therefore it is optimal to have all errors of the
same order of magnitude.

For specific calculations one can have additional con-
straints. For example, if one is interested only in energy ei-
genvalues, then the optimal parameters are obtained by mini-
mizing all errors and minimizing the ratio N=L /�, which
corresponds to the size of the transition operator matrix S
=2N that needs to be numerically diagonalized. The minimi-
zation of N is performed in order to minimize computation
time needed for the diagonalization, which roughly scales as
N3.

On the other hand, if one is interested in details of energy
eigenfunctions, then it might be necessary to have a fixed
small value for the discretization step �, which will allow all
features of eigenstates to be visible. This is especially impor-
tant for studies of higher energy eigenfunctions which, e.g.,
have many nodes, and in order to study them it is necessary
to have sufficient spatial resolution. In such case, the value
of � is fixed and other parameters are chosen so as to mini-
mize the errors to a desired value. For example, with the
discretization step of the order �=10−3 we have been able to
accurately calculate several hundreds energy eigenfunction
of the quartic anharmonic oscillator.

Table II gives eigenvalues of the double-well potential,
obtained from the quartic anharmonic potential �9� by setting
the mass M to some negative value. As can be seen, numeri-
cally obtained energy eigenvalues have the precision similar
to the previous case of the quartic potential without symme-
try breaking. The double-well behavior of the potential does
not present any obstacle in its numerical treatment by this
method.

Another situation in which one might be interested to
keep the ratio N=L /�, i.e., the size of the space-discretized

TABLE I. Low-lying energy levels of the anharmonic quartic
potential, obtained by diagonalization using level p=13 effective
action. The parameters are M =�=1, g=48, L=5, �=0.05, t=0.01.
For higher energy eigenvalues, absolute and relative errors �Ek and
�Ek are estimated by comparison with the diagonalization results
obtained from higher-order effective actions, finer discretizations,
larger space cutoffs, and lower values of the propagation time t.

k Ek ��Ek� �Ek

0 0.9515684727295000111468�8� 5
10−23 6
10−23

1 3.292867821434465922691�67� 4
10−22 2
10−22

2 6.30388056744652609989�522� 2
10−21 4
10−22

3 9.72732317270370501553�448� 5
10−21 5
10−22

4 13.4812758360385893838�1489� 2
10−20 2
10−21

5 17.5141323992530709259�6206� 3
10−20 2
10−21

6 21.7909563917965158973�8744� 6
10−20 3
10−21

7 26.286125156056810490�92289� 2
10−19 7
10−21

8 30.979882837938369575�08213� 2
10−19 8
10−21

9 35.856438766665971146�24181� 3
10−19 9
10−21

TABLE II. Low-lying energy levels of the double-well potential,
obtained by diagonalization using level p=18 effective action. The
parameters used: M =−1, �=1, g=12, L=16, �=0.1, t=0.05. The
absolute and relative errors �Ek and �Ek are estimated by compari-
son with the diagonalization results obtained from higher-order ef-
fective actions, finer discretizations, larger space cutoffs, and lower
values of the propagation time t.

k Ek ��Ek� �Ek

0 0.328826502590357561530�2� 7
10−22 2
10−21

1 1.41726810105965210733�23� 5
10−21 4
10−21

2 3.0819506284815341204�849� 3
10−20 1
10−20

3 5.019323060355788021�7990� 2
10−19 4
10−20

4 7.186203252338934478�3958� 5
10−19 8
10−20

5 9.54285734251209386�72421� 2
10−18 2
10−19

6 12.06403774639116375�04211� 4
10−18 4
10−19

7 14.7314279571006902�462590� 1
10−17 7
10−19

8 17.5310745155383834�413592� 3
10−17 2
10−18

9 20.4519281359123716�968554� 5
10−17 3
10−18
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evolution operator matrix as large as possible is when a large
number of energy eigenlevels is needed. The number of en-
ergy eigenvalues that can be calculated by the diagonaliza-
tion is limited by the size of the matrix S=2N. Usually the
highest energy levels cannot be used due to the accumulation
of numerical errors, and therefore one needs to have a matrix
of sufficient size in order to study energy spectra. In such
cases it is necessary to use highly optimized libraries for
numeric diagonalization. We have implemented the effective
actions as a C programming language code �21� and used
LAPACK �26� library for numeric diagonalization to calculate
large number of energy eigenstates and eigenfunctions.

Even when one uses such a sophisticated tool, the highest
eigenvalues cannot be used due to accumulation of numeri-
cal errors. In order to assess the quality of the obtained re-
sults for higher energy eigenstates, it is necessary to compare
the numerical results with some known properties of the
physical system. One such property is density of states, de-
fined formally as

��E� = �
k=0

�

��E − Ek� , �10�

for a system with a discrete spectrum. This relevant physical
quantity can be directly calculated using numerically ob-
tained spectra. On the other hand, it can be also analytically
calculated using semiclassical approximation. This approxi-
mation is valid at least in the high-energy region, and we can
use it to assess the quality of our numerical results. In semi-
classical approximation, the density of states is calculated as

�sc�E� = ddxddp

�2��d �„E − H�x,p�… . �11�

replacing the discrete spectrum with a continuous distribu-
tion of energy defined by the classical Hamilton function
H�x ,p�. After integration over momenta, we obtain the well-
known result �27�

�sc�E� =
� M

2�2�d/2

��d

2
�  ddx�„E − V�x�…„E − V�x�…�d/2�−1,

�12�

where � is the Heaviside step-function. For the quartic an-
harmonic potential �9� in d=1 the density of states can be
expressed in terms of the complete elliptic integral of the
first kind K�k�=F�� /2,k� �28�,

�sc�E� =
�2M/�22

�M2�4/4 + gE/6�1/4


 K��1

2
−

M�2/4
�M2�4/4 + gE/6

� . �13�

In practical applications, especially in d=1, it might be
difficult to compare directly semiclassical approximation for
density of states and numerically obtained histogram for
��E�, since energy levels are usually not degenerated, so the

spectrum is very sparse. In order to have sufficient statistics
for a reasonable histogram, one has to use large value for bin
size, and effectively the whole numerically available spec-
trum is reduced to just a few bins. For this reason, it is more
instructive to study the cumulative density of states,

n�E� = 
Vmin

E

dE���E�� , �14�

which counts the number of energy eigenstates smaller or
equal to E. For quartic anharmonic oscillator the cumulative
density of states is given by the above integral of the com-
plete elliptic integral of the first kind, and can be calculated
numerically. Figure 3 gives comparison of cumulative den-
sity of states calculated from our numerical diagonalization
results and semiclassical approximation nsc�E�. As expected,
the agreement is excellent up to very high values of energies,
where numerical diagonalization eventually fails due to the
finite number of calculated energy eigenvalues and effects of
discretization. Such behavior can be improved by using finer
discretization �smaller spacing size�, as illustrated by two
different discretization steps for g=48, M =1 in Fig. 3. Such
analysis can be used to assess the obtained spectrum and
determine the number of reliable energy eigenvalues. Typi-
cally we can achieve up to 104 reliable energy eigenlevels
with simulations on a single CPU. Note that the computer
double precision accuracy of 10−16 imposes the limit on the
maximal accessible energy eigenvalue e−tEmax�10−16, i.e.,
Emax��16 log 10� / t. For Fig. 3 we get Emax�1840, which is
above the limit imposed by the discretization used, as we can
see from the graph.

In order to further demonstrate the applicability of the
method, we also present numerical results for the modified
Pöschl-Teller model

V�x� = −
�2

2

��� − 1�
cosh2 �x

, �15�

which has only a finite set of discrete energy eigenlevels
Ek=−�2��−1−k�2 /2 for integer k from the interval 0�k
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FIG. 3. �Color online� Cumulative distribution of the density of
numerically obtained energy eigenstates for the quartic anharmonic
and double-well potential, for �=1, t=0.02, p=21 and the follow-
ing values of diagonalization parameters: L=10 for g=12 and L
=8 for g=48. The discretization step is given on the graph by the
value of L /�, top to bottom. Long-dashed lines give corresponding
semiclassical approximations for the cumulative density of states.
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��−1. Energy eigenvalues and eigenfunctions of this model
are analytically known, and we will use them to further test
our method. Effective actions to very high order are available
also for this potential �21�, and we use them for numerical
diagonalization of the evolution operator. Naturally, the di-
agonalization will give as many eigenvalues and eigenvec-
tors as the size of the matrix S, but only the first few can be
interpreted as bound states of the potential, according to the
above condition 0�k��−1.

Figure 4�a� gives the analysis of errors in the ground en-
ergy due to the space cutoff, while Fig. 4�b� gives the corre-
sponding analysis of L errors for numerical calculation of the
energy level E5. As we can see, the behavior of errors is the
same as for the case of anharmonic oscillator, and we are
again able to obtain high accuracy results. Figure 4�c� gives
the time dependence of errors in ground energy obtained by
numerical diagonalization using different levels p of effec-
tive actions. The scaling of errors proportional to tp is evi-
dent from the graph, as well as the discretization errors due
to the finite discretization step �. To ensure that the effective
potential is bounded from below, in this case we have to
remove higher-order powers of discretized velocity � from
the effective potential near x=0, since such terms have non-
vanishing negative coefficients in the vicinity of x=0, due to
a peculiar nature of the potential. In practical applications,
one can use, e.g., p=1 effective action �which does not de-
pend on �� near x=0. As can be seen, this does not affect the
obtained numerical results.

Table III part �a� gives the obtained energy spectra for the
modified Pöschl-Teller potential with the parameters �=0.5,
�=15.5. If necessary, the precision of obtained energy levels
can be further increased by appropriately changing the dis-
cretization parameters. Contrary to the situation for anhar-
monic oscillator, where relative error of numerically calcu-
lated low-lying energy levels did not change significantly,
here we see that the increase in the error is substantial. This
is caused by the fact that this potential has only a small finite
set of discrete bound states, so energy levels k�10 corre-
spond to the very top of the discrete spectrum. In practical
applications such pathological situations are not encountered,
but as we can see, even this can be dealt with by the proper
choice of discretization parameters. The quality of numeri-
cally calculated eigenfunctions is assessed in Table III part b,
where we give a symmetric matrix of scalar products
��k ��l

exact� of numerically calculated and analytic eigenfunc-
tions. As we can see, the overlap between analytic and nu-
meric eigenfunctions is excellent, and they are orthogonal
with high precision, which is preserved even for higher en-
ergy levels. We have also verified that for parameters given
in the caption of Table III and with the discretization step of
the order �=10−3 eigenfunctions of all bound states can be
accurately reproduced.

IV. NUMERICAL RESULTS FOR d=2 MODELS

In this section we illustrate the application of the numeri-
cal method based on the diagonalization of transition ampli-
tudes on two d=2 models. The first model is the anharmonic
oscillator

V�x,y� =
1

2
M���

2 − �2��x2 + y2� +
g

24
�x2 + y2�2

=
1

2
M��

2 �1 − r2��x2 + y2� +
g

24
�x2 + y2�2, �16�

which is used for a description of the trapping potential used
in a recent experiment with fast-rotating Bose-Einstein con-
densate of 87Rb atoms �29–31�. The harmonic frequency of
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FIG. 4. �Color online� Deviations �Ek
�p��� ,L , t�−Ek

exact� as a func-
tion of L for �a� k=0 and �b� k=5, and �c� as a function of t for k
=0, for the modified Pöschl-Teller potential. Energy eigenvalues are
obtained using effective action levels p=1,5 ,9 ,13,17,21 and t
=0.1, �=0.02 in graphs �a� and �b�, and p=1,3 ,5 ,7 ,9 ,11,13 and
L=5 in graph �c�, with the parameters �=0.5, �=15.5. Dashed lines
in the graph �c� correspond to the known discretization error �1�.
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the trapping potential is partially compensated by the rota-
tion frequency �. The small quartic anharmonicity is used in
order to allow the condensate to be rotated at the critical
frequency �=��, and still to remain confined. The ratio r
=� /�� is used to express rotation frequency in suitable
units of harmonic frequency ��.

The typical values of parameters used in the experiment
are ��=2� ·64.8 Hz and g=gexp=1.56
10−10 J /m4. In
Fig. 5 we have used much larger quartic coupling g�2

103gexp in order to increase the nonharmonic effects of the

potential. Also, the graphs in Fig. 5 are calculated for critical
rotation �r=1�, where the potential is reduced to a pure quar-
tic interaction. The analysis of errors is very similar as in the
one-dimensional cases we studied in the previous section.
The dependence of ground energy errors on the space cutoff
L is shown in Fig. 5�a�, and we see the usual saturation of
errors for sufficiently large values of L. The saturated value
rapidly decreases �by several orders of magnitude� as we
increase the level p of the effective action used to calculate
space-discretized matrix of the evolution operator. Figure

TABLE III. �a� Low-lying energy levels of the modified Pöschl-Teller potential, obtained by diagonal-
ization using level p=21 effective action. The parameters used: �=0.5, �=15.5, L=5, �=0.02, t=0.1. �b�
Symmetric table of scalar products ��k ��l

exact� of numerically calculated and analytic eigenstates for k , l
=0,1 ,2 ,3 ,4 ,5.

k Ek Ek
exact �Ek−Ek

exact� �Ek

�a�
0 −26.28125000000000000000000�174� −26.28125 2
10−24 7
10−26

1 −22.781250000000000000000�28812� −22.78125 3
10−22 2
10−23

2 −19.53124999999999999999�736443� −19.53125 3
10−21 2
10−22

3 −16.5312499999999999999�6571136� −16.53125 4
10−20 2
10−21

4 −13.7812499999999999�8195897101� −13.78125 2
10−17 2
10−18

5 −11.28124999999999�398393103608� −11.28125 6
10−15 6
10−16

6 −9.03124999999�8602255352218206� −9.03125 2
10−12 2
10−13

7 −7.031249999�773547728177905754� −7.03125 3
10−10 4
10−11

8 −5.2812499�74811672590174261082� −5.28125 3
10−8 5
10−9

�b�
0 1 2 3 4 5

0 1–4.1
10−12 1.2
10−13 2.8
10−6 7.4
10−14 3.0
10−7 7.9
10−14

1 1.2
10−13 1–1.1
10−11 2.1
10−13 4.5
10−6 4.6
10−14 6.5
10−7

2 2.8
10−6 2.1
10−13 1–2.2
10−11 1.3
10−13 5.9
10−6 2.2
10−13

3 7.4
10−14 4.5
10−6 1.3
10−13 1–3.5
10−11 3.1
10−13 6.9
10−6

4 3.0
10−7 4.6
10−14 5.9
10−6 3.1
10−13 1–4.8
10−11 7.9
10−13

5 7.9
10−14 6.5
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FIG. 5. �Color online� �a� Deviations from the ground energy �E0
�p��� ,L , t�−E0� as a function of the space cutoff L and �b� as a function

of the time t for a critically rotating gas of 87Rb atoms in a d=2 anharmonic trap with g�2
103gexp. The discretization parameters are
�=0.2, t=0.1 on the graph �a�, and L=3.2, �=0.2 on the graph �b�. Deviations are calculated using the ground energy E0

=1.47714975357799�4� obtained with p=21 effective action. The dashed line in graph �b� corresponds to the known discretization error �1�.
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5�b� shows the time dependence of ground energy errors,
which are found to fully agree with the scaling law tp for
sufficiently fine discretization. Again, the discretization er-
rors basically conform to the universal dependence given in
Eq. �17� of our previous paper �1�. The dimensionality of the
system introduces an overall multiplicative factor of 2, and
the additional factor of 2 in the cosh term.

Table IV gives the numerically obtained energy eigenval-
ues for different sets of parameters of the potential: nonro-
tating system, system with overcritical rotation �r=1.05�, and
system with overcritical rotation, but with significantly larger
anharmonicity �g=103gexp�. From the analysis of discretiza-
tion errors and errors related to the use of a chosen effective
action level p, we can estimate the errors in found energy
eigenvalues to be of the order 10−15, where we express en-
ergy in units of ��. The results in the Table IV are obtained
by numerical diagonalization based on the C SPEEDUP code
�21� and the use of the LAPACK �26� library. The estimated
error in energy eigenvalues is smaller than the �relative� error
which can be achieved in typical C simulations, which is of
the order 10−14. This is easily verified, since for several dif-
ferent values of discretization parameters we get the same
stable results shown in the table. Therefore, this table gives
certain digits in all energy eigenvalues, and the error can be
cited as implicit �half of the last digit�. This is good example
for practical applications, where we have managed to elimi-
nate all types of errors below the limit that can be seen due to
inherent numerical errors of computer simulation. However,
if such complete elimination of errors is not possible due to
the limitations in computer memory or computation time, the
analysis of errors presented in Fig. 5 allows us to reliably
estimate numerical errors in energy eigenvalues.

Figure 6 shows the numerically obtained ground state for
this two-dimensional potential for the case of overcritical
rotation. The ground state has the expected Mexican hat
shape. The figure gives a three-dimensional plot of the
ground state on the left, and the corresponding density plot
on the right, with values of the wave function mapped to
colors. Figure 7 gives density plots of k=1,2 ,3 ,4 eigenfunc-
tions for the same values of parameters. The discretization is
sufficiently fine ��=0.25� in rescaled dimensionless units� so
that all features of calculated eigenfunctions are clearly vis-
ible.

The numerical study of this example related to Bose-
Einstein condensation is chosen as an example where
ground-state eigenfunction is necessary with high resolution
in order to calculate e.g., time of flight absorption graphs
�32� and to study formation and evolution of vortices in the
condensate. In addition to this, large numbers of accurate
eigenstates are needed for calculation of the condensation
temperature, condensate fraction, and other static and dy-
namic properties of the condensate. For this reason, it is nec-
essary to assess numerically obtained eigenstates and use
only reliable ones in further calculation. As in the one-
dimensional case, we will calculate the density of states
�sc�E� in semiclassical approximation, and use it as a crite-
rion for the reliability of high-energy eigenstates. In d=2, the
density of states is given by a simple formula

�sc�E� =
M

2�2 d2x�„E − V�x�… . �17�

For the quartic anharmonic potential �16� the density of
states can be analytically calculated

�sc�E� =
M

22	−
6M��

2 �1 − r2�
g

+��6M��
2 �1 − r2�
g

�2

+
24E

g

 , �18�

or, in dimensionless units used in all numerical calculations,

TABLE IV. Low-lying energy levels of a rotating gas of 87Rb atoms in a d=2 anharmonic trap, obtained
using the level p=21 effective action. The discretization parameters are L=14, �=0.14, and t=0.2.

k Ek /��, r=0, g=gexp Ek /�� r=1.05, g=gexp Ek /��, r=1.05, g=103gexp

0 1.0009731351803 −1.1279858856602 1.1287297831435

1 2.0029165834022 −1.1169327267787 2.6161348497834

2 2.0029165834022 −1.1169327267787 2.6161348497834

3 3.0058275442161 −1.0842518375067 4.3476515279810

4 3.0058275442161 −1.0842518374840 4.3476515279812

5 3.0067964582067 −1.0311383813261 4.6528451852013

6 4.0097032385903 −1.0311383813261 6.2704552903671

7 4.0097032385903 −0.95910186300510 6.2704552903671

8 4.0116368851078 −0.95910186300478 6.7589882491411

9 4.0116368851078 −0.86968170695135 6.7589882491412
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FIG. 6. �Color online� Ground state �as a three-dimensional plot
on the left, and as a density plot on the right� of a rotating gas of
87Rb atoms in a d=2 anharmonic trap obtained using p=21 effec-
tive action. The parameters are r=1.05, g=gexp, L=20, �=0.25, t
=0.2.

VIDANOVIĆ et al. PHYSICAL REVIEW E 80, 066706 �2009�

066706-8



�sc�E� = −
3�1 − r2�

g
+�9�1 − r2�2

g2 +
6E

g
. �19�

Figure 8�a� shows the comparison of semiclassical ap-
proximation for the density of states, and the histogram for
numerically obtained energy eigenvalues of the potential
�16�. Due to the high degeneracy of energy eigenstates in d
=2, the histogram of numerically found energy levels con-
tains enough statistics over the whole region of energies, and
therefore can be used for assessment of the quality of nu-
merical spectra. As we see, the agreement is better and better
when we use finer space discretization. Depending on the
needed number of energy levels and maximal value of the
energy considered to be relevant for the calculation we can
choose appropriate values of discretization parameters that
will provide reliable numerical results up to desired energy
value. For example, for the choice of discretization param-
eters L=14, �=0.14, we can reliably use energy levels up to
E�120��.

Figure 8�b� shows the comparison of cumulative density
of states n�E� calculated for numerically obtained results and
in semiclassical approximation, by integrating the expression
�19�, which can be calculated analytically. The comparison
of numerical and semiclassical cumulative density of states
in Fig. 8�b� verifies our conclusions from Fig. 8�a�, and again
sets the same limit of reliable energy levels for chosen dis-
cretization parameters.

The second two-dimensional model we have studied nu-
merically is a sextic anharmonic oscillator,

V�x,y� = Vx�x� + Vy�y� + Vxy�x − y� , �20�

where Vi�x�=Vi0�aix
2+bix

4+cix
6�. The values of the coeffi-

cients used are given in Table V. The study of this potential
is motivated by Ref. �33�, where it has been used to investi-
gate the transition from regular to chaotic classical motion.
Figure 9 shows the numerically obtained ground state for this
two-dimensional potential, as a three-dimensional plot on the
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FIG. 7. �Color online� Density plots of level k=1,2 ,3 ,4 eigenstates of a rotating gas of 87Rb atoms in a d=2 anharmonic trap obtained
using p=21 effective action. The parameters are r=1.05, g=gexp, L=20, �=0.25, t=0.2.
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left, and as a density plot on the right. Figure 10 gives den-
sity plots of k=1,3 ,7 ,8 eigenfunctions for the same values
of parameters. The discretization is sufficiently fine ��
=0.04� so that we can resolve all details in the presented
eigenstates.

We have demonstrated that the presented approach can be
successfully used for numerical studies of lower-dimensional
models. Note that in d=3 the complexity of the algorithm
and sizes of matrices to be diagonalized may practically limit
the applicability to the calculation of only low-lying energy
levels. Also, in this case it might be difficult to numerically
obtain three-dimensional eigenfunctions on finer grids, since
even moderate grids with 50–100 points in one dimension
would require exact diagonalization of extremely large ma-
trices.

At the end, let us compare the complexity of the presented
approach and direct diagonalization of the space-discretized
Hamiltonian, as well as finite-element methods. The main
difference in the complexity of algorithms is related to the
exponential growth in the size of analytic expressions for the
effective potential with the increase in the level p, as dis-
cussed in Ref. �13�. Therefore, the required CPU time for
construction of the matrix to be diagonalized in the presented
approach grows exponentially with the level p, while in other
methods the construction of such a matrix does not require a
significant amount of time. However, the time for exact di-
agonalization far outweighs the time needed for construction
of even large matrices with moderate levels p of the order

10–20. The significant benefit of practically eliminating er-
rors associated with the time of propagation therefore fully
justifies the use of the effective action approach. Of course,
in practical applications one has to study the complexity of
the algorithm and to choose the optimal level p which will
sufficiently reduce the errors, while keeping the complexity
of the calculation on the acceptable level.

V. CONCLUSIONS

In this paper we have presented a substantial improve-
ment of previously introduced method �2� for study or prop-
erties of quantum systems using numeric diagonalization of
the space-discretized evolution operator. This approach al-
lows exact numeric calculation of a large number of energy
eigenvalues and eigenstates of the system. Our previous pa-
per �1� has presented detailed analysis of all types of discreti-
zation errors inherent to this method, which were not ana-
lyzed completely before.

This paper resolves a key problem in practical applica-
tions of this approach: accurate calculation of transition am-
plitudes, matrix elements of the space-discretized evolution
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FIG. 9. �Color online� Ground state �as a three-dimensional and
as a density plot� of a sextic anharmonic potential, obtained by
diagonalization using the level p=21 effective action. The param-
eters of the potential are given in the text. The diagonalization pa-
rameters: L=4, �=0.04, t=0.01.

TABLE V. Parameters of the sextic potential �20�.

i Vi0 ai bi ci

x 100 1.56 −0.61 0.32

y 100 0.69 −0.12 0.03

xy 100 −1.00 0.25 0.08
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FIG. 10. �Color online� Density plots of level k=1,3 ,7 ,8 eigenstates of a sextic anharmonic potential, obtained by diagonalization using
the level p=21 effective action. The parameters of the potential are given in the text. The diagonalization parameters: L=4, �=0.04, t
=0.01.
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operator. Using recently introduced effective action approach
�13� that gives systematic short-time expansion of the evolu-
tion operator, we can analytically calculate matrix elements
of the evolution operator with high precision. This enables
high-precision calculation of energy eigenvalues and eigen-
states, as was shown in this paper.

The derived analytical estimates for all types of errors,
including errors due to the approximative calculation of tran-
sition amplitudes, provide us with a way to choose optimal
discretization parameters and to reduce overall errors in en-
ergy eigenvalues and eigenstates for many orders of magni-
tude, as was demonstrated for several one- and two-
dimensional models. We have shown that numerical
diagonalization of the space-discretized evolution operator
can be successfully applied for studies of many interesting
lower-dimensional models. Due to the superior behavior of
discretization and other errors in this method compared to
methods based on diagonalization of the discretized Hamil-
ton operator and related methods, the presented approach is a

method of choice for numerical studies of lower-dimensional
physical systems. The authors are already using this ap-
proach for numerical investigation of properties of fast-
rotating Bose-Einstein condensates �32�, and plan to use it
for the treatment of dilute quantum gases in a disordered
environment. Another interesting line of research would be
combining the present method with the density-matrix renor-
malization group approach �7,34�.
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