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ABSTRACT

Regime switching, the process where complex systems undergo transitions between qualitatively different dynamical states due to changes
in their conditions, is a widespread phenomenon, from climate and ocean circulation, to ecosystems, power grids, and the brain. Capturing
the mechanisms that give rise to isolated or sequential switching dynamics, as well as developing generic and robust methods for forecasting,
detecting, and controlling them is essential for maintaining optimal performance and preventing dysfunctions or even collapses in complex
systems. This Focus Issue provides new insights into regime switching, covering the recent advances in theoretical analysis harnessing the
reduction approaches, as well as data-driven detection methods and non-feedback control strategies. Some of the key challenges addressed
include the development of reduction techniques for coupled stochastic and adaptive systems, the influence of multiple timescale dynamics on
chaotic structures and cyclic patterns in forced systems, and the role of chaotic saddles and heteroclinic cycles in pattern switching in coupled
oscillators. The contributions further highlight deep learning applications for predicting power grid failures, the use of blinking networks to
enhance synchronization, creating adaptive strategies to control epidemic spreading, and non-feedback control strategies to suppress epileptic
seizures. These developments are intended to catalyze further dialog between the different branches of complexity.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0247498

Maintaining regular function, flexibility, and adaptive capability
in complex systems, as well as preventing dysfunction or col-
lapse, often depends on regime switching triggered by changes
in the systems’ conditions. In this Focus Issue, regime switching
is introduced as a broad paradigm referring to qualitative shifts
between long-term dynamical states, which may not be asymptot-
ically stable. These shifts can be sudden or gradual, reversible or
irreversible, and can occur as single events or be parts of sequen-
tial activity patterns. In this way, the concept encompasses phe-
nomena such as tipping, heteroclinic switching, noise-induced
attractor hopping, chaotic itinerancy, and quasi-stationary states
in adaptive networks. Key theoretical challenges include reducing

the effective dimensionality of collective dynamics, resolving the
impact of multiple timescales, and extending bifurcation theory
to non-autonomous systems. This Focus Issue seeks to advance
reduction methods using frameworks like Ott–Antonsen (OA)
and Montbrió–Pazó–Roxin (MPR), as well as to promote the
integration of stochastic and multiple timescale approaches to
time-varying networks. Another key aspect concerns improving
our understanding of the role of multistability and chaotic saddle
invariant sets in the organization of regime switching, especially
in noisy environments. Given that regime switching can lead to
catastrophic failures or extreme events, enhancing capabilities in
their detection, prediction, and control is essential. This Focus
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Issue underscores progress in reduction approaches, data-driven
detection methods, and control strategies, supporting interdis-
ciplinary exchange in fields like neuroscience, gene regulatory
networks, population dynamics, laser dynamics, power grids, and
extreme events.

I. INTRODUCTION

Over the past two decades, advances in big data assimila-
tion and analysis have provided deep insights into how tran-
sitions between qualitatively distinct dynamical states give rise
to optimal operation, flexibility, adaptation, or even dysfunction
and collapses in complex systems. While some transitions have
attracted much attention for their severe and long-lasting impact,
like the ice sheet degradation,1 loss of Arctic sea ice,2 breakdown
of the Atlantic Meridional Overturning Circulation,3 Amazon rain-
forest dieback,4 or the disruption of food chains due to species
extinction,5 other switching phenomena seamlessly blend into our
everyday lives, shaping motor coordination,6 working memory,7

decision making,8 or gene expression.9 Explaining such processes
has prompted renewed interest in generalizing to more complex
scenarios of the classical bifurcation theory, which traditionally
addresses qualitative changes in low-dimensional autonomous or
periodically forced systems under adiabatic parameter variation. In
this context, several key issues have emerged, including the reduc-
tion of effective dimensionality of systems’ dynamics to allow for
the use of bifurcation theory, advances to the theory of (stochas-
tic) multiple timescale processes, and the extension of attractor
and other concepts from bifurcation theory to non-autonomous
systems. Additionally, there has been a growing need for new meth-
ods to study temporal dynamical networks under different ratios
of characteristic timescales involved and for the improved under-
standing of the role of saddle invariant sets and metastable states in
organizing transient and long-term dynamics of complex systems.
Finally, machine learning-based techniques are being developed to
detect and predict transitions in real-world systems, while in par-
allel, new efficient control strategies are devised for systems where
the application of feedback may not be feasible. The described chal-
lenges often intersect: for instance, systems with multiple timescale
dynamics can exhibit high-dimensional slow manifolds, or the noise
may act in concert with a fast varying parameter to significantly
alter the systems’ behavior. Overcoming such challenges is relevant
not only to enhancing our theoretical understanding but also for
developing practical solutions to pressing real-world problems.

To cover the wide scope of the stated problems, we introduce
the term regime switching as a general paradigm to describe tran-
sitions occurring in complex systems between qualitatively distinct
long-term dynamical states, referred to as regimes. Certain aspects of
this definition are deliberately not specified or are subtly differenti-
ated from the related phenomena, such as tipping, also called critical
transitions or regime shifts depending on the particular branch of
complexity. Notably, the regimes per se are not required to exhibit
asymptotic stability, but should just be sufficiently long-lived to be
observable. Also, no assumptions are made on the timescale of tran-
sitions compared to the characteristic timescale of local dynamics
(relaxation or dissipation rate), allowing not only for abrupt but

also for more gradual transitions found, e.g., in pattern-forming10

and heterogeneous systems,11,12 or the process of species extinction.13

Unlike classical tipping, regime switching may be triggered by
parameter changes or forcing that are not necessarily small or cumu-
lative. Moreover, apart from occurring as isolated events, these
transitions can also be parts of sequences, such as cascades or cyclic
patterns found in climate models,14,15 coupled oscillators,16–18 or
neuroscience.19–23 As a process, regime switching can be reversible,
including smooth (continuous) or explosive (sudden and discon-
tinuous) transitions, or may be irreversible, marked by jump-like
hysteretic shifts to contrasting regimes.24 Conceptually, the regime
switching framework described above seeks to unify a broad range
of phenomena, including (i) all forms of tipping, (ii) heteroclinic
switching in single or coupled heteroclinic cycles (heteroclinic net-
works), (iii) noise-induced switching (attractor hopping) between the
coexisting metastable states, (iv) chaotic itinerancy between quasi-
attractors, and (v) sequential activity patterns in adaptive networks.
Though not all of these subclasses are discussed in depth in this
Focus Issue, each is briefly considered in Sec. II.

A significant area of research related to regime switching is the
development of reduction approaches, which simplify the systems’
high-dimensional dynamics into effective low-dimensional models.
These methods have been instrumental in various fields, ranging
from mean-field models in condensed matter physics,25 over mas-
ter stability function (MSF) in coupled oscillators26 to neural mass
models in neuroscience.27 The cornerstone for the current expan-
sion of reduction techniques has been laid by the Ott–Antonsen
(OA)28,29 and Watanabe–Strogatz (WS)30,31 frameworks. They have
provided a mathematically rigorous theory resolving among else,
a long-standing issue of why many oscillator population models
display low-dimensional collective behavior. More recently, next-
generation neural mass (NGNM) models, prompted by the work of
Montbrió et al.,32 have provided new insights on states of partial syn-
chrony and multistability, adapting the OA reasoning to populations
of quadratic integrate-and-fire neurons. As their key advantage,
all three recent reduction approaches hold exactly, allowing for
the study of regime switching by classical bifurcation theory. This
Focus Issue contributes to the field in several directions, including
the understanding of the impact of non-Gaussian white noise,33,34

finite-size effects,35,36 and adaptation.37 Another branch of reduction
approaches that has witnessed recent progress concerns multiple
timescale dynamics,38 in particular, in relation to the impacts of
forcing, adaptation, and noise. This trend is also reflected in this
Focus Issue by explaining the onset and multistability of multimode
bursting in a motif of Bonhoeffer–van der Pol oscillators with a
slow periodic drive.39 We further hope to encourage the combina-
tion of reduction approaches, such as NGNM or OA methods with
slow–fast reduction,22,40,41 which may prove valuable across a wide
range of complex systems, including, e.g., for adaptive and other
temporal dynamical networks.

While reduction approaches focus on simplifying high-
dimensional dynamics into effective low-dimensional models,
another crucial aspect of understanding regime switching relates
to data-driven methodologies. The latter provide practical tools for
data compression to extract meaningful statistical and other hidden
structures of systems’ dynamics from complex, high-dimensional
datasets.42,43 In many applications, model-free detection and
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forecasting of regime switching from time series is often complicated
by high dimensionality, irregular sampling times, and noise from
various sources.43 Overcoming these difficulties is highly important
because regime switching can sometimes lead to undesired states
harmful to the system function or can even trigger systemic failures.
For instance, tipping phenomena may be accompanied by extreme
events or transitions to regimes where extreme events become more
frequent.43 Therefore, identifying precursors, i.e., early-warning
indicators of critical transitions, has become essential for timely
interventions that could avert or abate dangerous outcomes or
allow enough time to devise mitigation strategies. This Focus
Issue features several contributions on detecting regime switching
using data-driven approaches, including topological44 and recur-
rence analysis,45 causation entropy boosting,46 structural changes in
functional neural network,47 and machine learning techniques.48,49

Notably, despite the recent advances in early-warning indicators
of tipping via deep learning50–53 and reservoir computing,54 con-
tributions in these directions were not submitted to this Focus
Issue.

Significant progress has been made not only in understanding
regime switching through theoretical frameworks and data-driven
methodologies but also by developing effective control strategies to
induce the desired or suppress the potentially harmful transitions.
The latter is essential to achieving and maintaining optimal func-
tion in complex systems and often hinges on modifying the systems’
multistable behavior.55 While multistability can provide operational
flexibility, it may also interfere with optimal performance. Control
strategies can have different objectives, including stabilizing certain
states against noise-induced switching, guiding transitions toward
target states, and altering the state space landscape to eliminate the
undesired states or to affect the preference of attractors. In some
real-world systems, including the brain, cellular automata or reser-
voir computers, maintaining function in the vicinity of a transition,
e.g., at the “edge of criticality”56,57 or “edge of chaos,”58,59 or manag-
ing long chaotic transients are also critical goals. Control theory clas-
sically distinguishes between feedback, non-feedback, and stochastic
control methods.55 Nevertheless, the difficulties in applying feedback
in many complex systems60 has gradually shifted the focus toward
non-feedback and stochastic approaches, as well as the emerging
field of control via adaptive61 and other time-varying networks.62

Promising strategies include less invasive non-feedback techniques,
such as parameter perturbations, and stochastic control methods
aimed at selecting or eliminating specific regimes. Given the evolv-
ing landscape of complex systems, greater emphasis is needed on
controlling sequential switching phenomena, such as heteroclinic
cycles. This Focus Issue features key contributions addressing con-
trol dynamics, including (i) chaos control—examining transitions
between regular and chaotic behaviors,63 including spatially local-
ized chaos;64 (ii) time-varying networks for managing transitions to
and from synchronization65,66 and the onset of recurring extreme
events;67 (iii) control by adaptation for epidemic spreading68 and
population dynamics;69 (iv) stochastic control in metapopulation
models70 and power grids;48,71 and (v) non-feedback control strate-
gies for epileptic seizure dynamics through external pulses and
perturbations of parameters and dynamical variables.37

In summary, regime switching represents a critical area of
research in understanding complex systems. Theoretical frameworks,

such as reduction approaches, offer valuable insights into the under-
lying dynamics, while data-driven methodologies enhance detec-
tion and prediction capabilities. Furthermore, control strategies are
essential for managing regime transitions, thereby promoting the
desired states and suppressing the undesirable ones. This Focus
Issue addresses these key aspects, highlighting the recent advances
and aiming to catalyze further developments in the field.

II. MULTIPLE FACETS OF REGIME SWITCHING

Regime switching in complex systems manifests in various
forms, each presenting unique challenges related to their differ-
ent dynamical background. This section surveys some of the most
prominent mechanisms driving these transitions, highlighting their
theoretical foundations and practical implications. Broadly speak-
ing, regime switching may comprise isolated transitions between
asymptotically stable regimes, or the transitions may foster sequen-
tial or cyclic activity patterns involving a succession of long tran-
sients. In the following, we summarize both types of phenomena,
singling out tipping as a representative of the former, and discuss
several more subtle paradigms related to the latter class, includ-
ing heteroclinic switching, chaotic itinerancy, attractor hopping,
and sequential switching triggered by adaptation. These multiple
facets underline the complexity of regime switching and emphasize
the range of methods required to understand, detect, predict, and
control such transitions.

A. Tipping

In the last two decades, a plethora of different tipping phe-
nomena has been described in different branches of complexity
science, from Earth’s climate (ice sheet loss, permafrost melting, dis-
ruption of monsoons, collapse of Atlantic Meridional Overturning
Circulation), ecology (Amazon forest dieback, desertification, and
extinction of species), and medicine (asthma and migraine attacks,
onset and termination of epileptic seizures, cardiac arrest), to the
social sphere (market crashes, power blackouts, mass panic, form-
ing of public opinion).72,73 Tipping has classically been described as
an abrupt and persistent shift to a qualitatively different dynamical
state by small and gradual changes in the system’s external con-
ditions, including parameter variation, forcing, and noise, which
may act independently or in concert.74 Though the terms critical
transitions, tipping and regime shifts are nowadays used inter-
changeably, historically their scopes had subtle differences due to
their distinct background. While the term tipping has maintained
the highest level of generality, though at first often implying irre-
versibility of the regime change, the term critical transitions has
originally been reserved for tipping under variation of an external
parameter, drawing analogy to phase transitions. The emphasis on
the small amplitude of perturbations, which trigger the transition
derives from the initial understanding of the regime shifts in ecol-
ogy, implying an inherent self-amplifying character of the tipping
mechanism via positive feedback.75

At the earlier stage, there have been many attempts to classify
tipping phenomena by drawing analogies to bifurcation theory on
one hand, and to the theory of phase transitions, on the other hand.
However, not all instances of tipping are related to bifurcations,
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and also, not all of them involve ergodicity and symmetry break-
ing inherent to phase transitions. Still, tipping phenomena mani-
fest certain universal features, like being associated with exceeding
certain thresholds, such as boundaries between (fractal) attraction
basins in multistable systems, bifurcation points, or critical rate of
parameter variation. In these terms, Ashwin et al.76 classified tip-
ping phenomena to three categories, namely, B-induced tipping
associated with a slow passage through a bifurcation threshold;
N-induced tipping, conforming to a noise-induced escape from
the vicinity of a metastable state (though some definitions invoke
stochastic bifurcation77 or refer to a switch to a coexisting metastable
state78); and R-induced tipping in non-autonomous systems, where
the dynamics fails to track the attractor adiabatically due to a too
fast parameter variation. A later addition to this classification con-
cerns shock-induced tipping triggered by the large perturbations
of external parameters or the systems’ variables.73 While B- and
N-tipping can be qualitatively explained by the concepts from clas-
sical bifurcation theory, most notably that of multistability,72,73 R-
and shock-induced tipping79 require a more general framework. In
particular, the study of R-induced tipping gave birth to the notion
of local-pullback (snapshot) attractors as the generalization of the
attractor concept to non-autonomous systems.80,81 More recently,
the requirement for the transition abruptness relative to the char-
acteristic timescale of the states’ dynamics has been relaxed in light
of gradual tipping observed in pattern-forming systems,10,12 which
unfolds by a succession of intermediate regimes or by front propaga-
tion separating the different coexisting patterns, then the scenarios
with a high topological complexity,82 and the systems with modular
structure undergoing tipping cascades.14,83 Concerning the depen-
dence on multiple timescale dynamics, a particular relation between
the system’s relaxation time and the timescale of parameter vari-
ation may make the tipping onset fast or slower,84,85 and for the
latter, a too short transgression over the threshold may not even trig-
ger tipping.86 Regarding the nature of the associated states, recent
extensions concern cases where the attractors are more complex
than equilibria (periodic or chaotic attractors),82 whereby the tip-
ping often becomes phase-sensitive.87 Another scenario may involve
states that are not attractors, such as R-tipping in excitable systems.88

Tipping phenomena may give rise to systemic failures and
may be accompanied by extreme events or involve transitions to
regimes with their more likely recurrence.43 Thus, it has become a
necessity to develop early-warning indicators of tipping which could
allow for timely application of potential control strategies to avert or
soften the pending dangerous and catastrophic events, or to provide
enough time to devise mitigation strategies. The initial success of
theory-driven approaches in deriving generic early-warning indica-
tors for bifurcation-related tipping has been prompted by the analy-
sis of the reduced, “normal form”-like low-dimensional (stochastic)
multiple timescale models,77,89 portraying a tipping system with a
near zero real part of the dominant eigenvalue as an overdamped
particle in an ever softening potential well.90 The reduced ability
to recover from local perturbations manifests as critical slowing
down,91–94 with the accumulation of perturbations reflected in the
increase of lag-1 autocorrelation, variance or the asymmetry of fluc-
tuations (skewness).95 Nevertheless, the robustness and reliability of
these indicators for empirical time-series, and even model systems,
have been limited by the high dimensionality of data, dependence

on the type of bifurcation, and the sensitivity to noise beyond white
and Gaussian.96–98 Other methods for detecting and forecasting tip-
ping have invoked concepts from non-equilibrium phase transitions
(discontinuity of non-equilibrium entropy or heat capacity),99 and
network theory (visibility graphs, recurrence methods, transition
networks)42 or have aimed for evaluation of the dominant eigen-
value based on Takens’s embedding theorem.100 Nevertheless, the
most successful methods so far leverage machine learning tools,
most notably deep learning.50,52,53 The latter have demonstrated the
ability to determine the type of bifurcation and to predict the crit-
ical point, though with potential caveats related to the dependence
on training data sets.100 These tools offer a more flexible approach to
forecasting tipping, with the potential for broader application across
various fields.

B. Heteroclinic switching

In many fields of complexity, from the brain to ecosystems,
activity is organized in sequential activity patterns that are generic,
i.e., reproducible and robust, and yet consist of just long transients
connected by rapid switching events. Their dynamical background
may be different, and understanding their self-organization requires
nonlocal stability analysis. One of the most influential concepts for
sequential activity is based on heteroclinic cycles,101 which con-
sist of saddle invariant sets connected by heteroclinic orbits. Apart
from asymptotic stability, when their period increases with time and
tends to infinity,102 they may also display non-asymptotic stability.103

Heteroclinic cycles generically organize periodic or chaotic global
dynamics in systems with symmetry,104 such that saddles correspond
to patterns of localized activity or partial synchrony. Earlier mod-
els have typically considered phase-locking patterns in frequency-
synchronized phase oscillators where saddle equilibria correspond
to phase-locked cluster states.16 More recently, the focus has shifted
to switching between saddle chaotic sets, which conform to patterns
of localized frequency synchrony (weak chimeras) in coupled popu-
lations of identical oscillators with higher-order interactions.17,104–106

Apart from model systems, heteroclinic cycles have often been
considered in the context of neuroscience. Earlier work has related
them with the activity of network motifs featuring winnerless
competition,19,107 such as central pattern generators. Nevertheless,
encoding along sequences of saddles has also been invoked as a
paradigm for more complex scenarios, such as information presen-
tation in visual, auditory, and odor perception,19,108 as well as the
organization of spontaneous sequential activity of neuronal pop-
ulations in rest-state networks.109 The concept has recently been
brought back to the spotlight by suspected links to higher cognitive
functions, such as creativity and its interplay with emotions.20,110,111

Moreover, coupled heteroclinic cycles are gaining attention (het-
eroclinic networks),102,103 which naturally emerge in neuroscience
for coupled network motifs or modular and hierarchical neural
networks.23,112

C. Chaotic itinerancy

Chaotic itinerancy21,113 is a form of closed-loop activity between
the long-term transients, where the switching between the long
epochs of low-dimensional and nearly periodic dynamics occurs via
short high-dimensional chaotic transients. The pseudo-stationary
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dynamics unfolds within the so-called attractor ruins nearby the
quasi-attractors,114 which are envisioned as dynamical objects with
a neutral stability, such that they attract a positive measure of orbits
but still possess no asymptotic stability. In contrast to metastable
states, an escape from their vicinity does not require a finite but
only an infinitesimal perturbation. Chaotic itinerancy has classi-
cally been invoked in relation to neuroscience,21,115 most often as
a paradigm for associative memory or for the spontaneous cortical
activity underlying fast switches from synchronized to desynchro-
nized behavior but has also been associated with pattern formation
in model systems.116

D. Attractor hopping

Attractor hopping117 is a form of noise-induced sequential
activity that comprises the noise-triggered switching between the
coexisting metastable states derived from the attractors of the noise-
less system. Hopping in systems with high multistability and fractal
basin boundaries is qualitatively different from that in bistable ones,
because the structure of the saddles may determine which transi-
tions are allowed.117 Moreover, in highly multistable systems, suf-
ficiently strong noise may bias the switching process by affecting
the attractor preference. This effect, called noise-induced prefer-
ence of attractors,55 manifests as the washing out of metastable
states associated with attractors whose basins are small and are
thereby most fragile to noise. In terms of applications, slow switch-
ing between metastable states triggered by weak fluctuations is
believed to play an important role in various fields, including chemi-
cal kinetics,118 gene regulatory networks,9,119 population dynamics,120

neural networks,121,122 and transitions between the different states of
partial synchrony.123

E. Sequential activity in adaptive networks

Adaptation has quite recently emerged as a source of
robust sequential activity involving rapid transitions between the
quasi-stationary states of partial synchrony. Though their self-
organization mechanisms are different, these patterns still have two
common features: (i) they are facilitated by adaptive interactions;
(ii) they are slow–fast phenomena and require adaptive couplings
to evolve on a timescale slower than that of local dynamics. So far,
four different models of adaptive networks have been reported to
generate sequential activity, including recurrent synchronization22

in networks with asymmetric adaptation rules, which consists of
periodic alternation between the synchronous (phase-locked) and
asynchronous (typically frequency clustered) quasi-stationary states;
synchronization cluster bursting, where different states of partial syn-
chronization form and dissolve in a burst-like fashion;124 chaotic
recurrent clustering,18 where the switching between the different fre-
quency clusters is irregular involving slow chaos in coupling dynam-
ics; canard cascading in networks with global adaptive coupling,125

organized by a robust heteroclinic canard cycle where sequences
of quasi-stationary states conform to slow motion along the saddle
slow manifolds. Featuring different types of local dynamics (phase
oscillators,18,124 neural oscillators,22 and semiconductor lasers125),
these models suggest a promising avenue for various applications,
especially to neuromorphic computing.

III. REDUCTION APPROACHES

Reduction approaches have attracted considerable attention
within the last decade, playing an important part in the recently
gained theoretical insights into the collective dynamics of high-
dimensional complex systems. The advent of methods that under
certain conditions hold exactly rather than approximately has
enabled low-dimensional reductions that accurately account for
the collective dynamics, allowing for the use of classical bifurca-
tion theory to study the stability of complex systems and their
sensitivity to perturbations. The reduction approaches address
various aspects of complexity. In particular, Ott–Antonsen,28,29

Watanabe–Strogatz,30,31 and Montbrió–Pazó–Roxin32 approaches
treat the states of partial synchronization in populations of cou-
pled oscillators and neurons; master stability function26 concerns
the local stability of the completely synchronized state; the dimen-
sion reduction126,127 approximates the dynamics of complex systems
near tipping, and the multiple timescale reductions128 allow for the
separation of the dynamics unfolding on the fast or slow character-
istic timescales. In the following, we make a brief overview of these
methods, highlighting the important contributions of this Focus
Issue.

A. Ott–Antonsen and Watanabe–Strogatz reductions

The explanation for frequent observations of robust low-
dimensional collective dynamics in populations of coupled oscilla-
tors, despite their high-dimensional phase spaces, has long remained
elusive. A rigorous mathematical understanding arrived with the
Watanabe–Strogatz (WS)30,31 and Ott–Antonsen (OA)28,29 theories,
which in parallel triggered a shift of paradigm from the synchroniza-
tion transition to the study of complex states of partial synchrony.
The essential finding of the WS approach is that the dynamics of
finite assemblies of identical phase oscillators sine coupled to a com-
mon forcing, which can be the mean field, exactly reduces to the
dynamics of three macroscopic (WS) variables plus constants of
motion. On the other hand, the OA theory holds exactly in the ther-
modynamic limit for heterogeneous populations of oscillators with
a Cauchy distribution of natural frequencies. Its main result con-
cerns the existence of an invariant two-dimensional (OA) manifold
that corresponds to a wrapped Cauchy distribution of phases, such
that systems’ dynamics generically converges to it for asymptoti-
cally long times.129 On this manifold, the dynamics reduces to just
a single complex equation for the global order parameter. The even-
tually established relation between the WS and OA approaches has
indicated that the OA reduction conforms to the particular choice,
namely, the uniform distribution, of the constants of motion for
the WS reduction.130,131 More recently, it has been shown that both
approaches can be generalized to populations influenced by local
Cauchy noise.132,133 Nevertheless, the scenarios with more general
forms of noise remain a field of intense study.

In the latter context, this Focus Issue features an extension of
the OA formalism to systems featuring non-Gaussian white noise. In
particular, Dolmatova et al. employ a circular cumulant approach to
generalize OA theory to coupled phase oscillators with local α-stable
white noise,34 which is frequently encountered in financial markets,
biological, and physical systems. The validity of the derived two-
cumulant reduction is illustrated for the Kuramoto synchronization
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transition, as well as Abrams scenario134 giving rise to chimeras in
hierarchical populations of stochastic phase oscillators.

B. Next-generation neural mass models

The recent arrival of the next-generation neural mass (NGNM)
models, spurred by the seminal work of Montbrió et al.,32 has
allowed for a systematic analysis of multistability and switching
dynamics in neuronal populations (see Refs. 131 and 135–137 for
comprehensive review). Earlier phenomenological neural mass and
neural field models138,139 approximated the population firing rate
dynamics by developing heuristic arguments for the static, typi-
cally sigmoid-shaped transfer function between the mean mem-
brane potential and mean firing rate, invoking assumptions such
as negligible correlations in local dynamics. In sharp contrast, the
NGNM models characterize population dynamics in terms of mean-
field equations for the mean firing rate and the mean membrane
potential which are exact in the thermodynamic limit. The NGNM
framework is based on the Lorentzian Ansatz for the populations
of quadratic integrate-and-fire neurons, describing the evolution on
the OA manifold by variables adapted for neuroscience. Note that
an alternative approach employing explicitly the OA Ansatz28,29 has
been developed for populations of theta neurons.140 The NGNM
models can be used to trace the transitions between the differ-
ent states of partial synchrony via standard bifurcation analysis,
also providing insights into the microscopic structure of the asso-
ciated collective states. While the classical notion of spike synchrony
between neurons is reflected in the onset of collective oscillations,141

the NGNM framework further establishes a conformal mapping
between the mean-field variables and the level of population syn-
chrony described by the complex Kuramoto order parameter.32,136

So far, NGNM models have been used to address a broad spectrum
of theoretical problems, from the impact of different types of synap-
tic coupling,142–145 synaptic noise,129,146 quenched randomness,146

and finite-size effects,35,147 over the onset of collective rhythms
in (coupled) neuronal populations141,148–151 and spatial patterns in
neural fields,152–154 to experiment-related studies of cognitive155,156

and pathological processes157,158 and simulations of the whole brain
activity.159,160

This Focus Issue provides advances to the NGNM framework
in several directions, including the impact of non-Gaussian additive
noise, the finite-size effects, and metabolic feedback to the dynamics
of populations of quadratic integrate-and-fire neurons.

In particular, Goldobin et al. develop a new reduction the-
ory based on pseudocumulant expansion for the population of
quadratic integrate-and-fire neurons influenced by local α-stable
white noise.33 This type of non-Gaussian noise, characterized by
heavy-tail power-law distributions, is argued to emerge generically
in diverse scenarios, including, e.g., large populations with imperfect
synchrony, the impact of finite-size effects, or sparse connectivity.
Remarkably, the analysis for the case of fractional α has revealed
that the minimal asymptotically rigorous reduction for the case of
additive Gaussian noise α = 2 has to include three rather than two
pseudocumulants, which has been the practice so far. Apart from
implications to neuroscience, the new formalism can also apply to
condensed matter physics, like the problem of Anderson localization
in one-dimensional systems.

Klinshov et al. consider a form of additive common noise,
called shot noise, to capture the impact of finite-size effects on
the bifurcation structure and switching dynamics in a population
of excitatory quadratic integrate-and-fire neurons.35 Fluctuations
derived from the system’s finite size turn the attractors of the
related NGNM model into metastable states and are capable of
triggering switching dynamics, manifested as slow stochastic fluctu-
ations between the coexisting metastable states. Shot noise is further
demonstrated to shift the bifurcation structure compared to the
thermodynamic limit, playing, in some cases, a constructive role by
expanding the parameter domains that support certain regimes.

Kirillov et al. consider the thermodynamic limit dynamics and
finite-size effects for a binary cortical motif of an excitatory and
inhibitory population of quadratic integrate-and-fire neurons with
bidirectional inter-population coupling.36 Despite its simplicity, the
model supports different types of multistable behavior, including the
coexistence of high- and low-activity macroscopic stationary states
and an oscillatory mode, as well as bistability between two peri-
odic or two chaotic regimes. While periodic solutions are typically
born from the Hopf instability of the high-activity stationary state,
chaos is shown to emerge via the Feigenbaum scenario. The finite-
size effects, captured by shot noise, induce fluctuations around the
thermodynamic limit attractors, as well as the recurrent switching
between the coexisting metastable states. Interestingly, certain subtle
structures from the thermodynamic limit, such as periodic windows
within chaotic domains, remain relatively well preserved in large but
finite populations.

Eydam et al. build an NGNM model to capture the impact
of metabolic feedback associated with a ketogenic diet, explaining
the scenarios for transitions to synchrony and suggesting strategies
to control the switching dynamics between the asynchronous and
seizure-like synchronous states37 (see also Sec. VI B). Contrasting
classical NGNM models, their system is three-dimensional due to an
additional equation for the dynamics of mean ATP concentration,
which reflects the metabolic feedback. Depending on the coupling
strength, two qualitatively different scenarios for the transition to
synchrony are revealed. For weaker couplings, a bistability region
between the lower- and the higher-activity asynchronous states
emanates from the cusp point, and collective oscillations emerge
via a supercritical Hopf bifurcation. For stronger couplings, a com-
plex bifurcation scenario is revealed, involving seven co-dimension
two bifurcation points, including pairs of Bogdanov–Takens and
generalized Hopf points. The latter allows both the lower- and the
higher-activity asynchronous states to undergo transitions to syn-
chrony, with hysteresis observed in the vicinity of subcritical Hopf
bifurcations.

C. Master stability function approach to network

synchrony

Synchronization is one of the most important paradigms of
self-organization in natural and synthetic complex systems, from
biology, physiology, and neuroscience, over ecology, social behavior,
and power grids to physics, chemistry, and technology.161 The lin-
ear asymptotic stability of the synchronization manifold in networks
of identical oscillators is classically analyzed by the method of mas-
ter stability function (MSF), which facilitates a high-dimensionality
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reduction and provides a unified framework for studying com-
plete synchronization independently of the oscillators’ nature. MSF
involves the separation of dynamical and topological features of the
network, relating the stability of the fully synchronized state with the
spectrum of the network’s graph Laplacian. Since the discovery by
Caroll and Pecora,26 the MSF approach has been extended to various
directions, accommodating on one hand for interaction delays162,163

and more complex interaction patterns, e.g., multilayer164 and mul-
tiplex networks,165 while on the other hand, facilitating the analysis
of local stability of cluster states.166 More recently, the method
has also been generalized to adaptive networks,167 static and time-
varying networks with higher-order interactions,168–170 and simpli-
cial complexes.171,172

This Focus Issue highlights the application of MSF to time-
varying networks. In particular, in two papers, the MSF method is
employed as a tool to optimize the form and structure of interac-
tions in time-varying networks of chaotic oscillators to induce and
improve the stability of the completely synchronized state (see also
Secs. VI A and VI D). While Dayani et al. use the MSF framework to
select the optimal time-varying coupling between the different local
variables,65 Sivanagesh et al. consider an alternative strategy based
on temporary decoupling of oscillators.66

D. Dimension reduction for dynamical networks

Representation of many high-dimensional complex systems by
networks sparked interest into developing effective low-dimensional
models of network dynamics that can predict the critical point, their
response to perturbations, and the onset of tipping-related correla-
tions. Motivated by the dimension reduction of high-dimensional
data, the immediate goal has become to determine whether certain
projections of high-dimensional network dynamics, such as sums
of weighted local variables, can approximate without substantial
information loss the network dynamics near criticality. To do so,
Gao et al. introduced a one-dimensional reduction,126 demonstrat-
ing for the class of directed weighted networks with negligible degree
correlations, that an appropriately weighted sum of local variables
can approximate the resilience function of network systems. The
latter characterizes their ability to maintain normal operation in
the presence of perturbations, taking into account the nodal in-
and out-degrees. Such degree-based mean-field theory implies that
nodes with the same degree statistically display similar dynamics,
such that the tipping dynamics is primarily influenced by the nodes
with high connectivity degrees. More recently, the one-dimensional
reduction has been extended to more general types of topology by
the spectral method, leveraging the eigenvectors and eigenvalues of
the networks’ adjacency or related matrices.127,173 While the near-
tipping resilience function is best approximated using the dominant
eigenvector of the adjacency matrix,174 it has turned out that non-
leading eigenvectors may help in optimizing the prediction error of
networks’ collective observables.175 In parallel, a two-dimensional
reduction based on the spectral method has been developed to
accurately predict the tipping point.176

In this Focus Issue, Ghosh et al.177 employ a resilience function
and the reduction based on eigenvector centrality to investigate the
contagious process on networks with triadic interactions within the
susceptible-infected-susceptible class of models. Using the resilience

function, insight is gained into the local structure of stationary states,
in particular, the scaling between the stable healthy states of nodes
with their degree. Also, group interactions are shown to impact the
character of macroscopic transitions from the non-healthy state,
giving rise to discontinuous transitions. The reduction based on
eigenvector centrality has been used to calculate the critical point for
the onset of epidemics. Both applied reduction techniques are indi-
cated to have a potentially wide range of applications, from ecology
to gene regulatory networks.

E. Reduction in multiple timescale systems

Systems with multiple timescale dynamics are abundant both
in nature and technology, with examples ranging from intrinsic
dynamics of neurons and cardiac cells, the dynamics of neuronal
populations with synaptic plasticity, enzyme kinetics and reac-
tion–diffusion systems, over social interactions and weather fore-
casting, to lasers or neuromorphic computing,38,128 to name but a
few. From the dynamical perspective, separation of timescales may
be associated with non-autonomous systems or may derive from
coupling delay or feedback, slow parameter drift, adaptation, learn-
ing, structural complexity of systems’ self-organization, and other
reasons. The most often invoked framework to study systems with
multiple timescale dynamics is singular perturbation theory.38,128

The typical scenario refers to so-called slow–fast systems of ordi-
nary differential equations with two characteristic timescales where
taking to zero the small parameter that accounts for scale separation
translates the system to a different structural class. Other instances
may include partial differential equations, stochastic differential
equations, piecewise-smooth differential equations, or discrete-time
systems.

Following the classical results of Tikhonov and Fenichel, it has
long been known that the condition of normal hyperbolicity allows
for the use of geometric singular perturbation theory,128 which facil-
itates the reduction of slow–fast systems to singular limit problems
on the fast and slow timescales, called layer and reduced problem,
respectively. Within the layer problem, the goal is to determine the
attractors of the fast flow treating slow variables as parameters. The
stable equilibria obtained for infinite scale separation then comprise
the critical manifold, which approximates well the slow invariant
manifold for large but finite scale separation. The reduced prob-
lem consists in deriving the dynamics of the reduced (slow) flow
either by applying adiabatic elimination for the stable equilibria of
the fast flow, or by employing the averaging approach for the stable
fast oscillations.

However, the normal hyperbolicity condition is often violated
due to non-hyperbolic points or singularities on the critical mani-
fold. This leads to more intricate phenomena, such as canards, which
are critical for the onset of relaxation or mixed-mode oscillations.178

While the loss of normal hyperbolicity in deterministic systems has
been mitigated by various techniques, such as geometric desingu-
larization (blowup method),179 the action of noise has been ana-
lyzed by stochastic averaging and homogenization approaches.180

Despite these advances, a number of problems on multiple timescale
dynamics remain open, especially concerning the non-autonomous
systems, the impact of high dimensionality of the fast flow, and
the scenarios with higher-codimension bifurcations of the fast flow.
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Addressing some of these problems, like a high dimensionality of
the fast flow in dynamical networks, may require combining other
reduction techniques with singular perturbation theory.

This Focus Issue provides two important insights into the
theory of multiple timescale dynamics: one concerning non-
autonomous systems with a higher co-dimension bifurcation of the
fast subsystem, and the other related to developing the concepts of
slow and fast chaos. On the former, Xia et al. employ the slow–fast
reduction to a system of two coupled Bonhoeffer–van der Pol oscil-
lators with a slow periodic drive, demonstrating how the higher
co-dimension bifurcation of the fast subsystem affects the type and
stability of bursting solutions.39 It turns out that the co-dimension
two double-Hopf bifurcation, where two stable limit cycles are
created, gives rise not only to single-mode but also to two-mode
bursting solutions with two types of fast oscillations. Such solutions
are shown to even stably coexist for certain conditions, resulting in
bursting multistability. It further explains how the features of the
slow periodic drive may be tuned to control the switching between
the different bursting regimes.

Jaquette et al. refine chaos theory in relation to systems with
multiple timescale dynamics, arguing for the existence of slow
chaos.181 The latter refers to chaotic attractors that display irregular
fluctuations at fast timescales but, in contrast to fast chaos, main-
tain macroscopic regularity and robustness to perturbation at slow
timescales. This new paradigm is deemed to be important for bio-
logical systems, such as central pattern generators, cardiac cells, or
the brain, where chaos has to be tamed to maintain homeostasis
at physiologically relevant timescales. Slow chaos is shown to exist
only for finite scale separation. Moreover, it is demonstrated that
the universal scenario of transition from slow to fast chaos involves a
slow passage of relaxation cycles through a crisis of chaotic attractor,
underlining the role of its ghost in the emergence of fast chaos.

IV. TIME-VARYING DYNAMICAL NETWORKS: BLINKING

AND ADAPTATION

Dynamical networks, where nodes are dynamical systems and
links represent their interactions, form the foundation for study-
ing complexity. In many applications, the structure of dynamical
networks—including both links and nodal parameters—is not time-
invariant, i.e., static, but evolves over time. These time-varying
(alternatively evolving or temporal) networks offer a more accu-
rate representation of real-world systems.61,169,182,183 The changes in
networks’ structure may arise for various reasons, such as adapta-
tion, external influences, and forcing, or the nodes may be occupied
by mobile agents with interactions sensitive to spatial proximity. In
general, the evolution of time-varying networks may or may not
depend on the dynamical states of nodes. In this respect, they can
broadly be cast into two classes: state-independent and adaptive
(state-dependent) networks. Both classes usually involve multiscale
dynamics due to the separation of the characteristic timescales of
coupling and nodal dynamics.

A. Regime switching in blinking networks

The most often considered example of state-independent net-
works is blinking networks,182,184,185 where the interactions between

the nodes are stochastically switched on or off, with the switching
process typically considered to be fast compared to the timescale
of nodal dynamics. A more recent realization of blinking net-
works concerns the scenario where the links are always on, but the
form of coupling function is switching.186 Other examples of state-
independent networks include agent-based models,187 like temporal
proximity graphs,169 where the interactions evolve depending on
the current spatial locations of the agents, and metapopulation
models,188 where the nodes are occupied by populations of agents
capable of migrating between the populations. For the typical sce-
nario of on–off fast blinking networks, it has been shown that
their long-term dynamics generally converges to that of an average
network with time-independent connectivity.184,185 Exceptions may
arise if the average network is multistable or if its attractors are not
invariant under the switching process.185

The central topics in the study of blinking networks have so
far been the stability of the synchronization manifold and the pos-
sibilities of enhancing synchronization by fast blinking networks.169

Apart from the stability criterion for the fast blinking case,189 it has
surprisingly been shown that there may also exist separate domains
of intermediate switching rates, called “windows of opportunity,”62

which support stable synchronization. In terms of synchronization
control, the MSF approach has revealed several scenarios where fast
blinking networks with pairwise,190 or higher-order interactions191

may promote synchronization compared to time-invariant net-
works.

In this Focus Issue, the topic of state-independent time-varying
networks has been addressed in four papers considering the issues of
convergence to the dynamics of an average network, as well as con-
trol of synchronization and extreme events. In particular, Dayani
et al. employ the MSF approach (cf. Sec. III C) to construct the
optimal time-varying coupling configuration to enhance synchro-
nization in complex networks of oscillators.65 Their method reduces
the synchronization threshold and improves the convergence rate
toward synchronization, increasing its robustness, as illustrated for
coupled Rösller, Chen, and Chua chaotic oscillators.

Sivaganesh et al. examine how establishing synchronization
and enhancing its stability may be achieved by transient and
optimal uncoupling in unidirectional networks of non-identical
counter-rotating chaotic oscillators.66 MSF approach, considered in
Sec. III C, is employed to corroborate the effectiveness of the sug-
gested method, illustrating it for the coupled Rössler and Sprott
oscillators.

Sriram et al. consider an example of a blinking system where
a multistable laser undergoes parametric perturbation that involves
fast periodic switching between two parameter values.192 It is shown
that such a system may not converge to the average dynamics. In
particular, due to the multistability of the unperturbed system, the
dynamics of the blinking system depends on the switching parame-
ters and converges to the average attractor only if the two-parameter
switching values lie close to the average. Conversely, for distant
switching parameters, the blinking attractors may be multistable and
substantially different from the average attractor.

Kingston et al. consider the emergence of recurring extreme
events in systems of coupled oscillators where time-dependent inter-
actions determine the duration and frequency of interactions.67

Blinking couplings are modeled by a periodic step function, whereby
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within the period, they switch between two levels of different
durations. Control strategies introduced to suppress the onset of
extreme events are considered in Sec. VI D.

B. Regime switching in adaptive networks

The paradigm of adaptive networks has become pervasive in
various fields, from neuroscience (synaptic193,194 and homeostatic
plasticity,195 adaptive myelination196) and transport networks197

over cooperative social behavior198,199 and epidemic spreading,200

to more recent developments concerning deep learning,201 reser-
voir computing,202 physiological networks modeling cancer genesis
and sepsis,203 and analogies to power grid models.204 Adaptation is
classically characterized as a co-evolution of the nodal and links’
dynamics, whose interdependence may be seen as feedback between
the networks’ structure and function (see Refs. 61 and 183) for
a comprehensive review. Nevertheless, certain types of adaptation
may be “kinetic,” such that the feedback between the collective and
nodal dynamics leads to changes in nodal dynamics due to variation
in the mean-field signal, as e.g., in cases of frequency adaptation in
clapping audiences205 or modulation of neuronal excitability due to
redistribution of metabolic resources.116,206–208 The adaptation pro-
cess may proceed as a sequence of discrete events or may unfold con-
tinuously over time,61 whereby the adaptation rate plays a nontrivial
role.183 The two classically invoked limits concern slow adaptation,
where the slowly evolving links may be regarded as parameters for
the fast nodal dynamics, or fast adaptation, where the slow–fast
landscape is reversed.

Adaptation has often been considered in the context of syn-
chronization, especially in networks of coupled phase or neural
oscillators, where it has been shown to strongly enhance multista-
bility and to qualitatively impact the synchronization and desyn-
chronization transitions. In particular, adaptation has been found
to give rise to several types of first-order synchronization transi-
tions, including explosive synchronization209 and single- or multi-
step transitions resembling heterogeneous nucleation.210,211 Adapta-
tion may also induce complex desynchronization transitions with
a high degree of multistability between the different states of par-
tial synchrony,167,212–214 such as multi-frequency-cluster states, soli-
tary states, and chimeras. Adaptive networks are also used as a
tool in control theory (see Sec. VI D), especially in terms of sta-
bilization of the fully synchronized state and increasing its basin
of attraction215 via adaptive coupling weights (gain control)216 or
rewiring of network topology (edge snapping control).217 While
the relation between adaptation and noise has also gained atten-
tion in the context of control, e.g., concerning control of coherence
resonance or stochastic bursting,218 it has also been realized that
plasticity in neuronal systems may counteract the impact of noise.219

As described in Sec. IV B, adaptation has quite recently been high-
lighted as an important ingredient in the onset of sequential activity
patterns.18,22,124,125

In this Focus Issue, the role of adaptation has been con-
sidered in light of applications to epidemic spreading, preserva-
tion of biodiversity in ecosystems, reservoir computing and the
impact of ketogenic diet in suppressing excessive synchroniza-
tion associated with epileptic seizures. In particular, Clauß and
Kuehn68 consider epidemic spreading in random and scale-free

networks with co-evolutionary dynamics, where the node states
change due to epidemics and the network topology evolves via
the creation and deletion of edges. The epidemic process involves
self-adaptive dynamics, where the switching between adaptation
strategies depends on the state and the history of the epidemic sys-
tem. The key result concerns the emergence of oscillations for the
simple setup involving the threshold base application of lockdown
measures. The period of oscillations is estimated for random and
scale-free networks (cf. Sec. VI D for potential control mechanisms).

Maslennikov et al. consider how recurrent networks of rate
neurons can be trained within the framework of reservoir com-
puting to learn complex patterns of partial synchrony.49 The tar-
get patterns to be generated and forecasted (cf. Sec. V C) include
chimeras, multi-cluster states, and traveling waves, often encoun-
tered in ensembles of adaptively coupled phase oscillators. The
mechanism of pattern generation is explained at the level of changes
in the structure of output weights and the microscopic dynamics of
neurons within the reservoir.

Biswas and Ghosh employ game theory to derive the condi-
tions for the emergence of evolutionary stable strategies that give
rise to sustainable dynamics of ecosystems.69 The latter feature pop-
ulation cycles or stationary solutions, which maintain biodiversity.
It is shown that evolutionary adaptation is required to suppress the
Allee effect, which per se yields a high risk of population extinction
(see also Sec. VI D).

Eydam et al. consider the impact of metabolic feedback related
to a ketogenic diet on the collective dynamics of a heterogeneous,
globally coupled population of excitable or tonic spiking excitatory
quadratic integrate-and-fire neurons37 (cf. Sec. III B). The feed-
back influences the neurons via ATP-dependent hyperpolarizing
potassium currents which are shown to trigger a form of kinetic
adaptation mechanism, where the excitable units closest to the bifur-
cation threshold are driven away from it while the frequency of
spiking units is reduced. At the collective level, such an adapta-
tion induces new types of multistability between synchronous and
asynchronous states, which has ultimately allowed for the develop-
ment of new strategies to control the switching between the different
collective regimes (see Sec. VI B).

V. DATA-DRIVEN APPROACHES FOR PREDICTING

REGIME SWITCHING

To understand the dynamics of real complex systems as they
evolve over time, we rely on measured datasets. The rate at which
we collect data on these systems is rapidly increasing, allowing for
deeper insights into their complex behaviors. However, predicting
regime switching, such as critical transitions, remains a major chal-
lenge, even in systems where the governing equations are known.
This difficulty is compounded in data-driven contexts, where the
equations are often unknown or incomplete. The existing techniques
often require reduction theorems for simplification while facing
issues such as noise and irregular time sampling, which compli-
cate the analysis. Specifically, regime switching presents a significant
challenge due to the high dimensionality of data in many real-world
systems, which frequently necessitates dimensionality reduction for
both computational efficiency and interpretation. Noise in the data
can obscure underlying dynamics, leading to false conclusions, while
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irregular sampling times hinder time-series analysis, as many time-
series analysis techniques assume uniform data collection intervals.
Addressing these issues remains an important focus for the develop-
ment of more robust and accurate models for complex systems.43

In response, modern methods for analyzing datasets associated
with regime switching have evolved. These techniques are broadly
classified into univariate and multivariate approaches. Univariate
methods focus on tracking the evolution of a single observable,
while multivariate techniques provide insights into the interac-
tions between different variables, allowing for a more comprehen-
sive understanding of system dynamics and correlations. Moreover,
these methods can be further divided into model-free and model-
based approaches. Model-free techniques aim to quantify similarity
or distance between states of the system,220,221 while model-based
approaches attempt to infer or construct underlying models from
the data to describe and predict the system’s behavior.222–225

Several notable methodologies have been developed for ana-
lyzing switching dynamics, including eigenvalue spectrum-based
methods, critical slowing down detection, and dynamic network
markers. Eigenvalue spectrum-based methods leverage the spectral
properties of governing matrices, such as the adjacency or Laplacian
matrices, to assess stability, identify critical points, and detect tran-
sitions in the system.226,227 Critical slowing down detection focuses
on tracking a system’s recovery rate from perturbations, which
gradually decreases as the system approaches a critical transition,
serving as a reliable early-warning indicator for tipping points.91,228

Meanwhile, dynamic network markers, which monitor changes in
network features like synchronization and connectivity patterns,
have proven effective in identifying regime shifts within dynamical
networks.229,230

Additionally, machine-learning-based methods have gained
popularity for their ability to analyze complex, high-dimensional
data. Approaches based on neural networks—such as long short-
term memory (LSTM) networks and reservoir computing—along
with regression models, can predict transitions and uncover hidden
patterns in time-series data without requiring explicit knowledge
of the system’s governing equations.50,231,232 Sparse identification,
in particular, provides a straightforward way to capture relation-
ships between variables and can be effective for forecasting transi-
tions based on historical data. These data-driven techniques have
shown promising results in predicting critical transitions in systems
characterized by nonlinear and even chaotic dynamics.

This Focus Issue delves into data-driven approaches for com-
prehending switching dynamics by integrating dynamical systems
theory with statistical learning techniques.45–49 Through this integra-
tion, the aim is to improve our ability to detect and manage critical
transitions in complex systems, particularly in cases where analyti-
cal techniques may fall short due to lacking governing equations or
models, the system’s complexity, or data constraints.

A. Sparse identification

Sparse identification methods aim to reconstruct dynami-
cal systems using a library of candidate functions through tech-
niques, such as sparse regression233 or mutual information-based
approaches like causation entropy.234 These methods quantify the
contributions of chosen candidate functions to model the dynamics

represented by the data. The reconstructed models can then be
used to identify regime-switching events. A key challenge in this
field is reconstructing the dynamics in real-time, known as online
learning.235 It requires analyzing short data batches simultaneously
to build the dynamical model and predict regime switching.

In this Focus Issue, the CEBoosting online learning algorithm
leverages causation entropy to determine the contributions of can-
didate functions in reconstructing dynamics and identifying regime
shifts.46 Despite the brevity of each data batch, the accumulated cau-
sation entropy value over a sequence of batches provides a robust
indicator. The CEBoosting method is tested on a nonlinear model
that simulates the interaction of topographic mean flow. This appli-
cation showcases the method’s capability to detect regime switching
online, even in the presence of strong intermittency and extreme
events.

B. Functional networks

The functional network approach involves reconstructing a
connectivity matrix using similarity measures such as correlation
or mutual information. The resulting matrices describe the func-
tional connectivity between system nodes and can be transformed
into a network topology by thresholding the matrix elements. When
applied to consecutive data windows, changes in the connectivity
matrix can indicate regime switching.

This Focus Issue introduces a recent method called “window
thresholding,” which has been developed to identify characteristic
sub-networks with connection strengths within a specific range.47 By
adjusting the window size from smaller to larger values, the trans-
formation or switching of sub-networks across different connection
scales can be examined. Window thresholding provides a detailed
analysis of brain networks from functional magnetic resonance
imaging data, enabling the identification of network components
at various connection strength levels. This study investigates how
transitions in the structure of functional neural network subnet-
works at different connection strengths could serve as biomarkers
for diagnosing major depressive disorder. It is shown that in healthy
individuals, functional neural networks transition from a combina-
tion of scale-free and random topology to small-world networks as
connection strength increases. In contrast, patients with the disorder
exhibit uncertainty at low connection strengths. To address inter-
subject variability in clinical data analysis, a consensus-network
approach is introduced.

C. Machine learning

Predicting future system states from past observations is a key
research question at the intersection of nonlinear dynamics and
machine learning, with neural networks being the primary tools for
this task. While many studies focus on optimizing hyperparameters
of neural networks such as network size, spectral radius, and neu-
ral time constants, there is often less emphasis on understanding
the microscopic dynamics and structural changes within networks
during training. This gap leaves a limited understanding of how
these internal dynamics influence the observed patterns at the func-
tional level. This Focus Issue addresses this by investigating target
patterns produced by adaptive networks of phase oscillators, which
can exhibit various intriguing regimes through small adjustments
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in control parameters.49 It begins by describing these adaptive net-
works and demonstrating how recurrent neural networks can be
trained to generate these patterns autonomously. The exploration
continues with an analysis of how specific dynamic and structural
features contribute to forming desired multidimensional signals.
Finally, the study explains how particular regimes emerge from the
interplay between structure and dynamics.

Machine learning methods can also be used to identify poten-
tial dynamical instabilities in systems undergoing structural pertur-
bations, such as adding or removing their components. Adding a
new component to improve the stability of network dynamics may
seem straightforward, but this modification can lead to failures,
a phenomenon known as Braess’s paradox.236,237 This unexpected
change can easily trigger regime switching and is generally difficult
to foresee, potentially causing severe damage. For example, adding
a transmission line in power grids can alter power flow distribution
and lead to capacity-load mismatches. Identifying potential sources
of this paradox in complex power grids has been a long-standing
challenge. In this Focus Issue, a deep learning method based on
graph neural networks, specifically utilizing graph isomorphism
networks, has been developed to predict and avoid Braess’s para-
dox, preventing performance deterioration and instabilities.48 The
research demonstrates the method’s efficiency using IEEE standard
test cases.

D. Recurrence analysis

Recurrence-based data analysis techniques are well-established
and widely used across various research areas.238 One of the most
popular tools in this category, the recurrence plot, reconstructs a
multidimensional phase space through the time embedding of scalar
time series. This method, however, presents challenges, such as
determining the correct embedding dimension and the necessary
time delay for reconstruction. While powerful for low-dimensional
time-series analysis, these techniques are computationally intensive
for analyzing flow dynamics.

In this Focus Issue, a more efficient recurrence-based approach
has been introduced to analyze multiphase flow dynamics by exam-
ining the angular separation between appropriately defined state
vectors.45 This method is applied to experimental multiphase flows
in a bubble column reactor and effectively detects a transition from
a regular state, marked by repetitive flow patterns, to a complex
dynamic state, characterized by variability in flow patterns over time
and space. For temporal analysis, each snapshot of the weighted
matrix is converted into a one-dimensional vector, and the angle
between pairwise vectors at different time points is calculated. For
spatial analysis, vectors are formed from specific locations across
consecutive time instants, and the angles between these vectors
are determined. The method is shown to have certain advantages,
such as requiring less data, compared to classical recurrence plot
methods, making it suitable for online detection of rapid regime
switching.

E. Topological data analysis

Topological data analysis (TDA) provides a valuable math-
ematical framework for examining the shape and structure of
complex, high-dimensional datasets.239 It has proven effective in

dynamic systems for early-warning detection, and in this Focus
Issue, TDA has been applied to the challenge of predicting lean
blowout in combustion systems.

In this Focus Issue, TDA has been used for real-time lean
blowout prediction across multiple combustor configurations.44 By
leveraging tools from mathematical topology and computer science,
TDA uncovers the underlying structure of data, tracking the per-
sistence of key features like connected components and holes in
phase-space-embedded time series. The study demonstrates how
point summary metrics derived from TDA can effectively capture
critical transitions in turbulent systems, offering a robust tool for
early-warning detection in both single-burner and multi-burner
combustors.

VI. NONLOCAL STABILITY AND CONTROL OF REGIME

SWITCHING

The overarching objective of control in complex systems is to
stabilize the desired dynamics, enhancing its resilience to external
perturbations, such as shocks or noise. Classical control approaches,
including feedback, non-feedback, stochastic, and adaptive tech-
niques, have proven quite effective in managing certain problems,
like control of chaos240,241 or synchronization.242,243 However, they
may still be challenged by the inaccessibility of certain degrees of
freedom, or the presence of high multistability and the need to
account for global state space properties. In light of increasingly
demanding applications, there is a growing need for both generic
and specific schemes to induce or suppress instances of regime
switching, affect the preference of attractors by adjusting the state
space properties,55 or maintain the system dynamics in the vicin-
ity of certain transitions, like the “edge of chaos”58,59 or the “edge of
criticality,”56,57 to achieve optimal performance.

Recent advances in data-driven approaches, particularly
machine learning and model-free prediction, have further enhanced
our ability to manage complex dynamics by enabling the detection
and prediction of critical transitions. These methods have allowed
for the timely intervention in networked systems, where cascades
of regime shifts can lead to catastrophic outcomes. The combina-
tion of classical and modern control methods, alongside data-driven
approaches, highlights the increasing versatility of control strategies
that are being applied across a wide range of disciplines, as illustrated
by this Focus Issue.

A. Feedback control

Feedback control, one of the most ubiquitous control strate-
gies, is a closed-loop scheme that leverages the system’s internal
state to deliver it back into the system, either instantaneously or
with a delay.244 Delayed feedback is classically deployed in the con-
text of Pyragas chaos control to stabilize unstable periodic orbits
embedded in chaotic attractors.241 On the other hand, instantaneous
feedback is typically harnessed in multistable systems to stabilize
the selected state against stochastic perturbations, thus preventing
the undesired attractor hopping.55 In the presence of stronger noise,
this can efficiently be achieved via reinforcement learning,245 which
may solely be based on data in a model-free scenario. In the case
when the target state is complete synchronization in large networks,
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applying feedback to all the nodes may not be feasible, which can
be resolved by the so-called pinning technique.243 The latter involves
implementing the feedback to just a small subset of nodes, which are
either preselected, if a detailed knowledge of the network topology
is available, or are changing adaptively by a time-varying controller.

In this Focus Issue, feedback control is explored in relation
to the transition between the regular and chaotic behavior. In par-
ticular, Öztürk et al.63 consider the impact of a delayed feedback
in the context of a minimal gene regulatory circuit capable of dis-
playing chaotic behavior. Inspired by synthetic gene networks, an
extended model of a two-gene regulatory circuit with delayed bi-
directional interactions is introduced, demonstrating that chaos can
emerge without inhibitory delayed self-feedback. While biological
gene networks are typically not chaotic, they are believed to be capa-
ble of operating at the edge of chaos or criticality, similar to neural
networks.58,246 The reported findings suggest that delayed couplings
could be an important ingredient for controlling gene regulatory
circuits, possibly allowing them to operate in the vicinity of the
transition to chaos.

B. Non-feedback control

In addition to closed-loop feedback control, there are state-
agnostic approaches to control that do not require the direct mea-
surement of the system state. Such non-feedback, or open-loop
control schemes, may involve the implementation of short exter-
nal pulses, or perturbations to the systems’ parameters or variables.
Examples include the application of noise to improve regularity of
oscillations via coherence resonance,247 the use of parametric per-
turbations to control the onset of oscillations248 or slow harmonic
perturbations to parameters or state variables to eliminate system
attractors,55 as well as impulse control through sudden jumps in state
variables.249

In this Focus Issue, non-feedback control strategies are consid-
ered for managing synchronous neural activity, a central topic in the
research on human epilepsy disorder. Eydam et al. present a theo-
retical framework to address this issue by focusing on manipulating
the metabolic feedback associated with ketogenic diet.37 The pro-
posed key mechanism for dietary control of neural activity relies on
activating the ATP-sensitive potassium channels. Using the results
of bifurcation analysis of the corresponding mean-field model, cf.
Sec. III B, three control strategies to trigger transitions from epilep-
tic to healthy dynamical regimes are developed. The latter include
parametric perturbation by adjusting the ATP production rate, the
shock-like dynamic perturbation induced by sudden changes in the
ATP concentration, and the application of external pulse currents.

C. Nonlocal stability and stochastic sensitivity analysis

The ability to control a system’s dynamics is intricately linked
to the knowledge of the state’s stability. While most commonly, local
and linear stability conditions are considered, many applications in
complex systems require nonlinear effects, global bifurcations, and
nonlocal state space properties to be considered to deliver robust
control schemes. One successful technique to incorporate nonlocal
aspects of the phase space is the so-called basin stability analysis,
which provides a global and probabilistic perspective on a system’s
resilience to perturbations.250,251

For power grids, control strategies are crucial to achieve opti-
mal operation. Khramenkov et al. propose a method for switching
between coexisting operating modes to prevent short-term out-
ages or blackouts and maintain stability in the presence of tem-
porary perturbations or noise.71 A grid model featuring three syn-
chronous generators supplying a common static load is shown to
exhibit homogeneous (symmetric) and inhomogeneous (asymmet-
ric) steady states, as well as librational (quasi-synchronous states)
and rotational limit cycles and chaotic attractors (asynchronous
modes). The nonlocal stability of regimes is probed by basin stability
analysis to investigate the impact of strong and realistic perturba-
tions. For the parameter domains supporting high multistability, an
attractor preference method to switch to a selected optimal state is
presented.

Nicolaou and Bramburger consider the mechanisms of onset
and disappearance of stationary and traveling periodic localized
patterns in systems of coupled oscillators, focusing on the exam-
ples of symmetry-breaking chimeras in rings of Janus oscillators
and gap solitons in arrays of parametrically driven pendula. In
contrast to classical snaking bifurcations giving rise to localized
steady states, the authors demonstrate new bifurcation scenarios
of symmetry-breaking localization involving heteroclinic cycles and
non-attracting chaotic invariant sets.64

In a metapopulation model of two oscillator populations cou-
pled by migration, Ryashko et al. consider the transitions triggered
by the noise in the migration intensity.70 The switching unfolds
between anti- and in-phase synchronization modes, as well as quasi-
regular and chaotic metastable regimes. By combining numerical
simulations to study attractor basins with a stochastic sensitivity
approach to probe the robustness to noise, they showcase the impor-
tance of transient chaotic dynamics for the switching process. It
is also demonstrated how switching can be predicted by taking
into account the stochastic sensitivity of attractors and their basins’
geometry.

D. Control by time-varying networks

The concepts of time-varying networks have emerged as a fun-
damental paradigm in many research fields related to complexity,
including neural and brain networks,252 power grids,253 and epidemic
spreading254 (see Sec. IV B for more details). Adaptive and blinking
networks are increasingly emerging as an important tool in control
theory, being often invoked in the context of stabilizing the fully
synchronized state. In that regard, several strategies for optimiz-
ing the blinking process,190,191 as well as adaptive techniques have
been developed, including the continuous adaptive control,215 edge
snapping,217 and the speed-gradient method.61 Adaptation is also
considered as a means to control stochastic phenomena, including
coherence resonance218 and noise-induced switching.255 Neverthe-
less, control of adaptive networks per se is also gaining attention,
especially given their ubiquity in biological systems, from trans-
portation networks to the genome and the brain.243 In this Focus
Issue, several contributions highlight the application of time-varying
networks to control of complex systems’ dynamics.

In epidemic modeling, Clauß and Kuehn68 incorporate the con-
cept of self-adaptive dynamics, where the switching in strategy space
depends on the history of the epidemic process (cf. Sec. IV B). It is
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indicated that introducing an observable that controls the switch-
ing mechanism by affecting the infection numbers may present one
of the simplest mechanisms to obtain self-organized criticality in
epidemic dynamics.

For complex oscillator networks, Dayani et al.65 use the MSF
approach to construct an optimal time-varying coupling configura-
tion that enhances the synchronization process (see Sec. IV A for
more details). The optimization is reflected in reducing the cost of
synchronization by improving the convergence rate and decreasing
the critical threshold. The developed control method is indicated to
be applicable to arbitrary network topology.

Kingston et al.67 develop a method for suppressing the onset
of extreme events in blinking networks of coupled oscillators (also
see Sec. IV A). The control strategy consists in shifting the tran-
sition point between the regular and extreme events by adapt-
ing the duration of interaction between system elements. The
method is illustrated for small systems and networks of coupled
FitzHugh–Nagumo and Líenard oscillators but is indicated to be
applicable for a wide range of oscillator networks.

Biswas and Ghosh apply game theory to introduce an evo-
lutionary adaptation strategy to overcome the Allee effect69 (see
Sec. IV B for more details). Such adaptive control is associated with
a trade-off, as the increase in the grazing burden of predator comes
at the expense of its accelerated mortality rate. Evolutionary stable
strategies, intended to support biodiversity, are formulated in such
a way that mutant counterparts cannot invade original populations.
These strategies are established to relate to local optima of certain
functions of model parameters.

VII. CONCLUSION

Regime switching refers to transitions observed in complex
systems between the qualitatively different states which may be
asymptotically stable or may conform to long transients. These
transitions can occur due to internal dynamics, external perturba-
tions, or changes in system parameters, making regime switching
a central concept for understanding and predicting the behavior
of natural and engineered systems. Since the 2018 Focus Issue of
Chaos on multistability and tipping,72 the field of regime switch-
ing has expanded in multiple directions, witnessing the emergence
of new paradigms, both in terms of focal problems and methodol-
ogy. The concept of tipping has evolved to encompass more gradual
and reversible changes,11–13,82 and classifications now also include
events triggered by sudden, shock-like perturbations.73 Substantial
interest has also gained sequential and cyclic forms of regime switch-
ing, including tipping cascades,14,83,256 emergent phenomena such as
heteroclinic cycles and networks,20,23,104,105 noise-induced switching
between highly structured metastable states,257,258 and cyclic patterns
of partial synchronization facilitated by a slow–fast decomposition
in adaptive networks.18,22,124,125 These developments underline the
need to broaden the notion of regime switching to transitions not
only between stable states but also between long transients, such
as quasi-attractors or metastable and pseudo-stationary states. Fur-
ther new insights have emerged from the study of multiple timescale
dynamics38 and the role of nonlocal stability,79 with a particular focus
on chaotic saddle structures.73 These advances reflect the growing
complexity of regime-switching phenomena across diverse systems.

In terms of theory, the expansion of the field has been facil-
itated by the arrival of powerful rigorous reduction approaches.
The frameworks derived from Ott–Antonsen (OA)28,29 and Mont-
brió–Pazó–Roxin (MPR)32 methods have closed the gap between
the apparent high dimensionality of phase spaces and the effec-
tive low-dimensionality of collective dynamics in coupled oscil-
lator and neuronal systems, respectively, prompting the efficient
use of bifurcation theory in the study of multistability and regime
switching. Other reduction techniques, such as the master sta-
bility function approach,26 have been adjusted to accommodate
for the time-varying structures, including blinking190 and adaptive
networks.167,204 In parallel, the research on improving the approxi-
mate methods of dimensionality reduction127,174 for the analysis of
tipping in networks is also gaining momentum.

The progress in data-driven approaches has significantly
enhanced our ability to detect and predict complex regime switch-
ing from time-series data. These methods, supported by the recently
emerged efficient deep learning frameworks,50–53 are providing fresh
insights into critical transitions and form an important part of this
Focus Issue. The control theory of regime switching has also seen
considerable advances. Non-feedback, stochastic, and adaptive con-
trol strategies are emerging as efficient and practical alternatives
to traditional feedback control, especially in the face of the latter’s
implementation challenges. These developments form another key
theme of the Focus Issue, demonstrating that theoretical and applied
methods evolve in parallel to contribute to the study of regime
switching in complex systems.

In light of the stated above, the main advances brought by this
Focus Issue can be cast into three groups: reduction approaches,
data-driven detection of regime switching, and control theory. In
terms of the development and application of reduction approaches,
the most important contributions include (i) the OA and MPR
formalisms, (ii) multiple timescale analysis, and (iii) dimension
reduction techniques. With regard to (i), we underline (a) the exten-
sions of the OA and MPR formalisms to populations of oscillators34

and neurons33 subjected to local non-Gaussian white noise; (b)
the exploration of finite-size effects in triggering noise-induced
switching between coexisting metastable states, including those
associated with periodic and chaotic attractors from the thermody-
namic limit;35,36 and (c) the role of metabolic feedback via ketogenic
diets in triggering new multistability forms and hysteretic transi-
tions between asynchronous and synchronous dynamics in neuronal
populations.37 For (ii), we highlight the use of multiple timescale
analysis in (a) explaining multimode bursting in coupled forced sys-
tems with a co-dimension two bifurcation of the fast subsystem,39

and (b) its role in distinguishing slow and fast chaos.181 In terms of
(iii), the dimension reduction approach has been applied to deter-
mine the critical point and the local structure of epidemic spreading
regimes in networks with higher-order interactions.177

The important problems of nonlocal stability analysis and tran-
sients associated with chaotic saddles have been considered in the
context of pattern formation and transitions between coexisting
regular and chaotic regimes. Concerning the former, new scenar-
ios involving heteroclinic cycles and saddle chaotic sets have been
reported for the onset of stationary localized patterns in coupled
oscillators.64 In the latter context, the basin stability analysis has
been employed to optimize the operation of power grid models in
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the presence of high multistability,71 while the stochastic sensitiv-
ity approach has been applied to explain noise-induced transitions
between quasi-regular and chaotic metastable states.70

This Focus Issue also contains valuable new insights into data-
driven detection of regime switching leveraging (i) sparse identifi-
cation, (ii) machine learning, (iii) network-based analysis of time
series, (iv) recurrence method, and (v) geometric approach to data
analysis. Concerning (i), the causation entropy-based CEBoosting
online detection algorithm46 has been introduced, indicated to be
robust even in the presence of intermittency and extreme events.
Regarding (ii), the reservoir computing framework has been applied
to detect the onset of complex patterns of partial synchrony,49 while
deep learning has been employed to detect power grid failures.48

In the framework of (iii), functional neural networks have been
employed to detect the onset of neurological disorders.47 In terms of
(iv), the recurrence plot method has been adapted to detect the onset
of multiphase flow patterns in bubble column reactors in chemi-
cal industries.45 In the context of (v), the topological data analysis
method has been developed to detect lean blowout in combustion
systems.44

Finally, we underline the important advances in control the-
ory in the directions of the application of time-varying networks
and the non-feedback control. Regarding the former, the dynam-
ics of blinking networks has been optimized to enhance synchro-
nization between chaotic oscillators65,66 or to prevent the onset
of extreme events,67 while adaptive strategies have been suggested
to control epidemic spreading.68 In the latter case, the different
forms of external pulses, parametric and shock perturbations have
been indicated as potential means to suppress epileptic seizure-like
dynamics.37

Given the reported advances in mathematical approaches and
the broad spectrum of applications covered, this Focus Issue offers
a unifying perspective on regime switching. We hope this synthesis
will catalyze further dialog between various branches of complex-
ity science, particularly the interaction between the fields of tipping
and extreme events, as well as applications involving adaptation,
reservoir, and neuromorphic computing. We anticipate that novel
methodologies, perhaps involving more sophisticated prediction
algorithms, new hybrid models or methods for control of sequential
activity, will emerge from these interactions.

Additional focus on extending bifurcation theory to nonau-
tonomous systems could provide a more robust framework for
analyzing time-varying and driven systems, which is essential for
understanding complex real-world phenomena. Furthermore, a
deeper comprehension of multiple timescale dynamics, especially
when the fast subsystem exhibits high dimensionality or higher-
codimension bifurcations, is critical. In the latter context, it seems
likely that different applications will increasingly require the com-
bined use of multiple reduction techniques.

Recent advances in data-driven approaches have significantly
enhanced our ability to detect and predict regime switching in
complex systems, particularly critical transitions between differ-
ent attractors.54 While avenues for forecasting based solely on
pretransition data are open, challenges remain concerning tran-
sitions between long-transient dynamics or cascading transitions
in networked systems.259 A promising direction involves extending
current methods to account for higher-order interactions between

nodes in complex networks.260 While machine learning models
trained on synthetic data show promise for predicting critical tran-
sitions in empirical systems, developing model-free prediction tech-
niques offers a significant opportunity for future research. Efforts
to diversify synthetic models could improve the robustness of these
approaches in real-world examples.50 Although bifurcation classi-
fication methods are available, pinpointing the exact moment of
a transition remains elusive. Another ingredient for accurate pre-
diction concerns understanding how random fluctuations, espe-
cially non-Gaussian and bounded noise, compete with deterministic
forces. Advances in these directions hold significant potential for
improving the early detection and control of regime switching in a
wide range of applications, from power grids and financial markets
to ecosystems, climate, and neuroscience.
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