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1 Introduction

Fermionic quantum criticality is thought to be an essential ingredient in the full theory
of high Tc superconductivity [1, 2]. The cleanest experimental examples of quantum criti-
cality occur in heavy-fermion systems rather than high Tc cuprates, but the experimental
measurements in heavy fermions raise equally confounding theoretical puzzles [3]. Most
tellingly, the resistivity scales linearly with the temperature from the onset of supercon-
ductivity up to the crystal melting temperature [4] and this linear scaling is in conflict
with single correlation length scaling at criticality [5]. The failure of standard perturbative
theoretical methods to describe such behavior is thought to indicate that the underlying
quantum critical system is strongly coupled [6, 7].

The combination of strong coupling and scale-invariant critical dynamics makes these
systems an ideal arena for the application of the AdS/CFT correspondence: the well-
established relation between strongly coupled conformal field theories (CFT) and gravita-
tional theories in anti-de Sitter (AdS) spacetimes. An AdS/CFT computation of single-
fermion spectral functions — which are directly experimentally accessible via Angle-
Resolved Photoemission Spectroscopy [8–10] — bears out this promise of addressing
fermionic quantum criticality [11–15] (see also [16, 17]). The AdS/CFT single fermion
spectral function exhibits distinct sharp quasiparticle peaks, associated with the forma-
tion of a Fermi surface, emerging from a scale-free state. The fermion liquid which this
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Fermi surface captures is generically singular: it has either a non-linear dispersion or non-
quadratic pole strength [11, 13]. The precise details depend on the parameters of the
AdS model.

From the AdS gravity perspective, peaks with linear dispersion correspond to the ex-
istence of a stable charged fermionic quasinormal mode in the spectrum of a charged AdS
black hole. The existence of a stable charged bosonic quasinormal mode is known to signal
the onset of an instability towards a new ground state with a pervading Bose condensate
extending from the charged black hole horizon to the boundary of AdS. The dual CFT
description of this charged condensate is spontaneous symmetry breaking as in a super-
fluid and a conventional superconductor [18–21]. For fermionic systems empirically the
equivalent robust T = 0 ground state is the Landau Fermi Liquid — the quantum ground
state of a system with a finite number of fermions. The existence of a stable fermionic
quasinormal mode suggests that an AdS dual of a finite fermion density state exists.

Here we shall make a step towards the set of AdS/CFT rules for CFTs with a finite
fermion density. The essential ingredient will be Migdal’s theorem, which relates the char-
acteristic jump in fermion occupation number at the energy ωF of the highest occupied
state to the pole strength of the quasiparticle. The latter we know from the spectral func-
tion analysis and its AdS formulation is therefore known. Using this, we can show that
the fermion number discontinuity is encoded in the probability density of the normalizable
wavefunction of the dual AdS fermion field.

This shows that the AdS dual of a Fermi liquid is given by a system with occupied
fermionic states in the bulk. The Fermi liquid is clearly not a scale invariant state, but any
such states will have energy, momentum/pressure and charge and will change the interior
geometry from AdS to something else. Which particular (set of) state(s) is the right one,
it does not yet tell us, as this conclusion relies only on the asymptotic behavior of fermion
fields near the AdS boundary. Here we shall take the simplest such state: a single fermion.1

Constructing first a set of equations in terms of the spatially averaged density, we find the
associated backreacted asymptotically AdS solution. This approximate solution is already
good enough to solve several problems of principle:

• A charged AdS black hole in the presence of charged fermionic modes has a criti-
cal temperature below which fermionic Dirac “hair” forms. For our effective single
fermion solution, the derivative of the free energy has the characteristic discontinu-
ity of a first order transition. In AdS/CFT this has to be the case: In contrast to
bosonic quasinormal modes, a fermionic quasinormal mode can never cause a linear
instability indicative of a continuous phase transition. In the language of spectral
functions, the pole of the retarded Green’s function can never cross to the upper-half
plane [13].2 The absence of a perturbative instability between this conjectured Dirac
“black hole hair” solution and the “bald” charged AdS black hole can be explained
if the transition is a first order gas-liquid transition. The existence of first order
transition follows from a thermodynamic analysis of the free energy rather than a
spectral analysis of small fluctuations.

1These solutions are therefore the AdS extensions of [22–25].
2Ref. [41] argues that the instability can be second order.
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• This solution with finite fermion profile is the preferred ground state at low tem-
peratures compared to the bare charged AdS black hole. The latter is therefore a
false vacuum in a theory with charged fermions. Confusing a false vacuum with
the true ground state can lead to anomalous results. Indeed the finite temperature
behavior of fermion spectral functions in AdS Reissner-Nordström, exhibited in the
combination of the results of [11, 13] and [12], shows strange behavior. The for-
mer [11, 13] found sharp quasiparticle peaks at a frequency ωF = 0 in natural AdS
units, whereas the latter [12] found sharp quasiparticle peaks at finite Fermi energy
ωF 6= 0. As we will show, both peaks in fact describe the same physics: the ωF 6= 0
peak is a finite temperature manifestation of (one of the) ω = 0 peaks in [13]. Its
shift in location at finite temperature is explained by the existence of the nearby true
finite fermion density ground state, separated by a potential barrier from the AdS
Reissner-Nordström solution.

• The solution we construct here only considers the backreaction on the electrostatic
potential. We show, however, that the gravitational energy density diverges at the
horizon. This ought to be, as one expects the infrared geometry to change due to
fermion profile. The charged AdS-black hole solution corresponds to a CFT system
in a state with large ground state entropy. This is the area of the extremal black-hole
horizon at T = 0. Systems with large ground-state entropy are notoriously unstable
to collapse to a low-entropy state, usually by spontaneous symmetry breaking. In
a fermionic system it should be the collapse to the Fermi liquid. The final state
will generically be a geometry that asymptotes to Lifschitz type, i.e. the background
breaks Lorentz-invariance and has a double-pole horizon with vanishing area, as ex-
pounded in [26]. Indeed the gravitational energy density diverges at the horizon in
a similar way as other systems that are known to gravitationally backreact to a Lif-
shitz solution. The fully backreacted geometry includes important separate physical
aspects — it is relevant to the stability and scaling properties of the Fermi liquid —
and will be considered in a companion article.

The Dirac hair solution thus captures the physics one expects of the dual of a Fermi
liquid. We have based its construction on a derived set of AdS/CFT rules to describe
systems at finite fermion density. Qualitatively the result is as expected: one also needs
occupied fermionic states in the bulk. Next to our effective single fermion approximation,
another simple candidate is the backreacted AdS-Fermi-gas [26]/electron star [27] which
appeared during the course of this work.3 The difference between the two approaches are
the assumptions used to reduce the interacting Fermi system to a tractable solution. Ideally,
one should carefully track all the fermion wavefunctions as in the recent article [38]. As
explained in [31] the Fermi-gas and the single Dirac field are the two “local” approximations
to the generic non-local multiple fermion system in the bulk, in very different regimes of
applicability. The electron-star/Fermi-gas is considered in the Thomas-Fermi limit where
the microscopic charge of the constituent fermions is sent to zero keeping the overall charge

3See also [28, 29]. An alternative approach to back-reacting fermions is [30].
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fixed, whereas the single Dirac field clearly is the ‘limit’ where the microscopic charge equals
the total charge in the system. This is directly evident in the spectral functions of both
systems. The results presented here show that each pole in the CFT spectral function
corresponds to a unique occupied Fermi state in the bulk; the electron star spectra show
a parametrically large number of poles [31–33], whereas the Dirac hair state has a single
quasiparticle pole by construction. The AdS-Dirac-hair black hole derived here therefore
has the benefit of a direct connection with a unique Fermi liquid state in the CFT. This is
in fact the starting point of our derivation.

In the broader context, the existence of both the Dirac hair and backreacted Fermi
gas solution is not a surprise. It is a manifestation of universal physics in the presence of
charged AdS black holes. The results here, and those of [11, 13, 26, 27], together with the
by now extensive literature on holographic superconductors, i.e. Bose condensates, show
that at sufficiently low temperature in units of the black-hole charge, the electric field
stretching to AdS-infinity causes a spontaneous discharge of the bulk vacuum outside of
the horizon into the charged fields of the theory — whatever their nature. The positively
charged excitations are repelled by the black hole, but cannot escape to infinity in AdS and
they form a charge cloud hovering over the horizon. The negatively charged excitations
fall into the black-hole and neutralize the charge, until one is left with an uncharged black
hole with a condensate at finite T or a pure asymptotically AdS-condensate solution at
T = 0. As [26, 27] and we show, the statistics of the charged particle do not matter for
this condensate formation, except in the way it forms: bosons superradiate and fermions
nucleate. The dual CFT perspective of this process is “entropy collapse”. The final state
therefore has negligible ground state entropy and is stable. The study of charged black holes
in AdS/CFT is therefore a novel way to understand the stability of charged interacting
matter which holds much promise.

2 From Green’s function to AdS/CFT rules for a Fermi liquid

We wish to show how a solution with finite fermion number — a Fermi liquid — is encoded
in AdS. The exact connection and derivation will require a review of what we have learned
of Dirac field dynamics in AdS/CFT through Green’s functions analysis. The defining
signature of a Fermi liquid is a quasi-particle pole in the (retarded) fermion propagator,

GR =
Z

ω − µR − vF (k − kF )
+ regular (2.1)

Phenomenologically a non-zero residue at the pole, Z, also known as the pole strength,
is the indicator of a Fermi liquid state. Migdal famously related the pole strength to the
occupation number discontinuity at the pole ω = 0.

Z = lim
ε→0

[nF (ω − ε)− nF (ω + ε)] (2.2)

where
nF (ω) =

∫
d2kfFD

(ω
T

)
ImGR(ω, k).
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with fFD the Fermi-Dirac distribution function. Vice versa, a Fermi liquid with a Fermi-
Dirac jump in occupation number at the Fermi energy ωF = 0 has a low-lying quasiparticle
excitation. Using our knowledge of fermionic spectral functions in AdS/CFT we shall first
relate the pole-strength Z to known AdS quantities. Then using Migdal’s relation, the dual
of a Fermi liquid is characterized by an asymptotically AdS solution with non-zero value
for these very objects.

The Green’s functions derived in AdS/CFT are those of charged fermionic operators
with scaling dimension ∆, dual to an AdS Dirac field with mass m = ∆ − d

2 . We shall
focus on d = 2 + 1 dimensional CFTs. In its gravitational description this Dirac field is
minimally coupled to 3 + 1 dimensional gravity and electromagnetism with action

S =
∫
d4x
√
−g
[

1
2κ2

(
R+

6
L2

)
− 1

4
F 2
MN − Ψ̄(/D +m)Ψ

]
. (2.3)

For zero background fermions, Ψ = 0, a spherically symmetric solution is a charged AdS4

black-hole background

ds2 =
L2α2

z2

(
−f(z)dt2 + dx2 + dy2

)
+
L2

z2

dz2

f(z)
,

f(z) = (1− z)(1 + z + z2 − q2z3) ,

A
(bg)
0 = 2qα(z − 1) . (2.4)

Here A(bg)
0 is the time-component of the U(1)-vector-potential, L is the AdS radius and the

temperature and chemical potential of the black hole equal

T =
α

4π
(3− q2) , µ0 = −2qα, (2.5)

where q is the black hole charge.
To compute the Green’s functions we need to solve the Dirac equation in the back-

ground of this charged black hole:

eMA ΓA(DM + iegAM )Ψ +mΨ = 0 , (2.6)

where the vielbein eMA , covariant derivative DM and connection AM correspond to the
fixed charged AdS black-hole metric and electrostatic potential (2.4) Denoting A0 = Φ and
taking the standard AdS-fermion projection onto Ψ± = 1

2(1 ± ΓZ)Ψ, the Dirac equation
reduces to

(∂z +A±) Ψ± = ∓ /T Ψ∓ (2.7)

with

A± = − 1
2z

(
3− zf ′

2f

)
± mL

z
√
f
,

/T =
i(−ω + gΦ)

αf
γ0 +

i

α
√
f
kiγ

i . (2.8)
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Here γµ are the 2+1-dimensional Dirac matrices, obtained after decomposing the 3+1
dimensional Γµ-matrices.

Explicitly the Green’s function is extracted from the behavior of the solution to the
Dirac equation at the AdS-boundary. The boundary behavior of the bulk fermions is

Ψ+(ω, k; z) = A+z
3
2
−m +B+z

5
2

+m + . . . ,

Ψ−(ω, k; z) = A−z
5
2
−m +B−z

3
2

+m + . . . , (2.9)

where A±(ω, k), B±(ω, k) are not all independent but related by the Dirac equation at the
boundary

A− = − iµ

(2m− 1)
γ0A+ , B+ = − iµ

(2m+ 1)
γ0B− . (2.10)

The CFT Green’s function then equals [11, 12, 34]

GR = lim
z→0

z−2mΨ−(z)
Ψ+(z)

− singular =
B−
A+

. (2.11)

In other words B− is the CFT response to the (infinitesimal) source A+. Since in the
Green’s function the fermion is a fluctuation, the functions Ψ±(z) are now probe solutions
to the Dirac equation in a fixed gravitational and electrostatic background (for ease of
presentation we are considering Ψ±(z) as numbers instead of two-component vectors). The
boundary conditions at the horizon/AdS interior determine which Green’s function one
considers, e.g. infalling horizon boundary conditions yield the retarded Green’s function.
For non-zero chemical potential this fermionic Green’s function can have a pole signalling
the presence of a Fermi surface. This pole occurs precisely for a (quasi-)normalizable mode,
i.e. a specific energy ωF and momentum kF where the external source A+(ω, k) vanishes
(for infalling boundary conditions at the horizon).

Knowing that the energy of the quasinormal mode is always ωF = 0 [11] and follow-
ing [13], we expand GR around ω = 0 as:

GR(ω) =
B

(0)
+ + ωB(1)+ + . . .

A
(0)
+ + ωA

(1)
+ + . . .

. (2.12)

A crucial point is that in this expansion we are assuming that the pole will correspond to a
stable quasiparticle, i.e. there are no fractional powers of ω less than unity in the expansion
around ωF = 0 [13]. Fermions in AdS/CFT are of course famous for allowing more general
pole-structures corresponding to Fermi-surfaces without stable quasiparticles [13], but those
Green’s functions are not of the type (2.1) and we shall therefore not consider them here.
The specific Fermi momentum kF associated with the Fermi surface is the momentum
value for which the first ω-independent term in the denominator vanishes A(0)

+ (kF ) = 0
— for this value of k = kF the presence of a pole in the Green’s functions at ω = 0 is
manifest. Writing A(0)

+ = a+(k− kF ) + . . . and comparing with the standard quasi-particle
propagator,

GR =
Z

ω − µR − vF (k − kF )
+ regular (2.13)
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we read off that the pole-strength equals

Z = B
(0)
− (kF )/A(1)

+ (kF ).

We thus see that a non-zero pole-strength is ensured by a non-zero value of
B−(ω = 0, k = kF ) — the “response” without corresponding source as A(0)(kF ) ≡ 0. Quan-
titatively the pole-strength also depends on the value of A(1)

+ (kF ) ≡ ∂ωA+(kF )|ω=0, which
is always finite. This is not a truly independent parameter, however. The size of the
pole-strength has only a relative meaning w.r.t. to the integrated spectral density. This
normalization of the pole strength is a global parameter rather than an AdS boundary
issue. We now show this by proving that A(1)

+ (kF ) is inversely proportional to B
(0)
− (kF )

and hence Z is completely set by B
(0)
− (kF ), i.e. Z ∼ |B(0)

− (kF )|2. Consider a transform
W̃ (Ψ+,A,Ψ+,B) of the Wronskian W (Ψ+,A,Ψ+,B) = Ψ+,A∂zΨ+,B − (∂zΨ+,A)Ψ+,B for two
solutions to the second order equivalent of the Dirac equation for the field Ψ+(

∂2
z + P (z)∂z +Q+(z)

)
Ψ+ = 0 (2.14)

that is conserved (detailed expressions for P (z) and Q+(z) are given in eq. (2.21)):

W̃ (Ψ+,A(z),Ψ+,B(z), z; z0) = exp
(∫ z

z0

P (z)
)
W (Ψ+,A(z),Ψ+,B(z)) , ∂zW̃ = 0. (2.15)

Here z0 is the infinitesimal distance away from the boundary at z = 0 which is equivalent to
the UV -cutoff in the CFT. Setting k = kF and choosing for Ψ+,A = A+z

3/2−m∑∞
n=0 anz

n

and Ψ+,B = B+z
5/2+m

∑∞
n=0 bnz

nr the real solutions which asymptote to solutions with
B+(ω, kF ) = 0 and A+(ω, kF ) = 0 respectively, but for a value of ω infinitesimally away
from ωF = 0, we can evaluate W̃ at the boundary to find,4

W̃ = z3
0(1 + 2m)A+B+ = µz3

0A+B− (2.16)

The last step follows from the constraint (2.10) where the reduction from two-component
spinors to functions means that γ0 is replaced by one of its eigenvalues ±i. Taking the
derivative of W̃ at ω = 0 for k = kF and expanding A+(ω, kF ) and B−(ω, kF ) as in (2.12),
we can solve for A(1)

+ (kF ) in terms of B(0)
− (kF ) and arrive at the expression for the pole

strength Z in terms of |B(0)
− (kF )|2:

Z =
µz3

0

∂ωW̃ |ω=0,k=kF

|B(0)
− (kF )|2 . (2.17)

Because ∂ωW̃ , as W̃ , is a number that is independent of z, this expression emphasizes that
it is truly the nonvanishing subleading term B

(0)
− (ωF , kF ) which sets the pole strength,

up to a normalization ∂ωW̃ which is set by the fully integrated spectral density. This
integration is always UV-cut-off dependent and the explicit z0 dependence should therefore

4P (z) = −3/z + . . . near z = 0
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not surprise us.5 We should note that, unlike perturbative Fermi liquid theory, Z is a
dimensionful quantity of mass dimension 2m+ 1 = 2∆− 2, which illustrates more directly
its scaling dependence on the UV-energy scale z0. At the same time Z is real, as it can be
shown that both ∂ωW̃ |ω=0,k=kF = µz3

0A
(1)
+ B

(0)
− and B

(0)
− are real [13].

2.1 The AdS dual of a stable Fermi liquid: applying Migdal’s relation
holographically

We have thus seen that a solution with nonzero B−(ωF , kF ) whose corresponding external
source vanishes (by definition of ωF , kF ), is related to the presence of a quasiparticle pole
in the CFT. Through Migdal’s theorem its pole strength is related to the presence of a
discontinuity of the occupation number, and this discontinuity is normally taken as the
characteristic signature of the presence of a Fermi Liquid. Qualitatively we can already
infer that an AdS gravity solution with non-vanishing B−(ωF , kF ) corresponds to a Fermi
Liquid in the CFT. We thus seek solutions to the Dirac equation with vanishing external
source A+ but non-vanishing response B− coupled to electromagnetism (and gravity). The
construction of the AdS black hole solution with a finite single fermion wavefunction is
thus analogous to the construction of a holographic superconductor [19] with the role of
the scalar field now taken by a Dirac field of mass m.

This route is complicated, however, by the spinor representation of the Dirac fields,
and the related fermion doubling in AdS. Moreover, relativistically the fermion Green’s
function is a matrix and the pole strength Z appears in the time-component of the vector
projection TriγiG. As we take this and the equivalent jump in occupation number to be the
signifying characteristic of a Fermi liquid state in the CFT, it would be much more direct
if we can derive an AdS radial evolution equation for the vector-projected Green’s function
and hence the occupation number discontinuity directly. From the AdS perspective is also
more convenient to work with bilinears such as Green’s functions, since the Dirac fields
always couple pairwise to bosonic fields.

To do so, we start again with the two decoupled second order equations equivalent to
the Dirac equation (2.7)

(
∂2
z + P (z)∂z +Q±(z)

)
Ψ± = 0 (2.20)

5Using that fW is conserved, one can e.g. compute it at the horizon. There each solution Ψ+,A(ω, kF ; z),

Ψ+,B(ω, kF ; z) is a linear combination of the infalling and outgoing solution

Ψ+,A(z) = ᾱ (1− z)−1/4+ıω/4πT + α (1− z)−1/4−ıω/4πT + . . .

Ψ+,B(z) = β̄ (1− z)−1/4+ıω/4πT + β (1− z)−1/4−ıω/4πT + . . . (2.18)

yielding a value of ∂ωfW equal to (P (z) = 1/2(1− z) + . . . near z = 1)

∂ωfW =
i

2πT
N (z0)(ᾱβ − β̄α) (2.19)

with N (z0) = exp
R z
z0
dz
h
P (z)− 1

2(1−z)

i
.
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with

P (z) = (A− +A+)− [∂z, /T ]
/T
T 2

,

Q±(z) = A−A+ + (∂zA±)− [∂z, /T ]
/T
T 2
A± + T 2 . (2.21)

Note that both P (z) and Q±(z) are matrices in spinor space. The general solution to
this second order equation — with the behavior at the horizon/interior appropriate for
the Green’s function one desires — is a matrix valued function (M±(z))αβ and the field

Ψ±(z) equals Ψ±(z) = M±(z)Ψ(hor)
± . Due to the first order nature of the Dirac equation the

horizon values Ψ(hor)
± are not independent but related by a z-independent matrix SΨ(hor)

+ =
Ψ(hor)
− , which can be deduced from the near-horizon behavior of (2.10); specifically S = γ0.

One then obtains the Green’s function from the on-shell boundary action (see e.g. [12, 35])

Sbnd =
∮
z=z0

ddxΨ̄+Ψ− (2.22)

as follows: Given a boundary source ζ+ for Ψ+(z), i.e. Ψ+(z0) ≡ ζ+, one concludes that
Ψ(hor)

+ = M−1
+ (z0)ζ+ and thus Ψ+(z) = M+(z)M−1

+ (z0)ζ+, Ψ−(z) = M−(z)SM−1
+ (z0)ζ+.

Substituting these solutions into the action gives

Sbnd =
∮
z=z0

ddx ζ̄+M−(z0)SM−1
+ (z0)ζ+ (2.23)

The Green’s function is obtained by differentiating w.r.t. ζ̄+ and ζ+ and discarding the
conformal factor z2m

0 with m the AdS mass of the Dirac field (one has to be careful for
mL > 1/2 with analytic terms [35])

G = lim
z0→0

z−2m
0 M−(z0)SM−1

+ (z0) . (2.24)

Since M±(z) are determined by evolution equations in z, it is clear that the Green’s
function itself is also determined by an evolution equation in z, i.e. there is some function
G(z) which reduces in the limit z → 0 to z2m

0 G. One obvious candidate is the function

G(obv)(z) = M−(z)SM−1
+ (z) . (2.25)

Using the original Dirac equations one can see that this function obeys the non-linear
evolution equation

∂zG
(obv)(z) = −A−G(obv)(z)− /TM+SM

−1
+ +A+G

(obv)(z) +G(obv)(z) /T G(obv)(z) . (2.26)

This is the approach used in [11], where a specific choice of momenta is chosen such that
M+ commutes with S. For a generic choice of momenta, consistency requires that one also
considers the evolution equation for M+(z)SM−1

+ (z).
There is, however, another candidate for the extension G(z) which is based on the

underlying boundary action. Rather than extending the kernel M−(z0)M−1
+ (z0) of the

boundary action we extend the constituents of the action itself, based on the individual

– 9 –
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fermion wavefunctions Ψ±(z) = M±(z)S
1
2
∓ 1

2M−1
+ (z0). We define an extension of the matrix

G(z) including an expansion in the complete set ΓI = {11, γi, γij , . . . , γi1,id} (with γ4 = iγ0)

GI(z) = M̄−1
+ (z0)M̄+(z)ΓIM−(z)SM−1

+ (z0) , GI(z0) = ΓIG(z0) (2.27)

where M̄ = iγ0M †iγ0. Using again the original Dirac equations, this function obeys the
evolution equation

∂zG
I(z)=−(Ā++A−)GI(z)−M̄−1

+,0M̄−(z) /̄T ΓIM−(z)SM−1
+,0+M̄

−1
+,0M̄+(z)ΓI /TM+(z)SM−1

+,0

(2.28)
Recall that /T γi1...ip = T [i1γ...ip] + Tjγji1...ip . It is then straightforward to see that for
consistency, we also need to consider the evolution equations of

J I+ = M̄−1
+,0M̄+(z)ΓIM+(z)SM−1

+,0 , J I− = M̄−1
+,0M̄−(z)ΓIM−(z)SM−1

+,0

and
ḠI = M̄−1

+,0M̄−(z)ΓIM+(z)SM−1
+,0.

They are

∂zJ
i1...ip
+ (z) =− 2Re(A+)J i1...ip+ − T̄ [i1Ḡi2...ip](z)

− T̄jḠji1...ip(z)−G[i1...ip−1(z)T ip] −Gi1...ipj(z)Tj
∂zJ

i1...ip
− (z) =− 2Re(A−)J i1...ip− + T̄ [i1Gi2...ip](z)

+ T̄jGji1...ip(z) + Ḡ[i1...ip−1(z)T ip] + Ḡi1...ipj(z)Tj

∂zḠ
i1...ip(z) =− (Ā− +A+)Ḡi1...ip − T̄ [i1J i2...ip]

+ (z)

− T̄jJ
ji1...ip
+ (z)− J [i1...ip−1

− (z)T ip] + J i1...ipj− (z)Tj (2.29)

The significant advantage of these functions GI , ḠI , J I± is that the evolution equations
are now linear. This approach may seem overly complicated. However, if the vector T i

happens to only have a single component nonzero, then the system reduces drastically to
the four fields J i±, G11, Ḡ11. We shall see below that a similar drastic reduction occurs, when
we consider only spatially and temporally averaged functions JI =

∫
dtd2xJ I±.

Now the two extra currents J I± have a clear meaning in the CFT. The current GI(z)
reduces by construction to ΓI times the Green’s function G11(z0) on the boundary, and
clearly ḠI(z) is its hermitian conjugate. The current J I+ reduces at the boundary to
J I+ = ΓIM+,0SM

−1
+,0. Thus J I+ sets the normalization of the linear system (2.29). The

interesting current is the current J I−. Using that S̄ = S̄−1, it can be seen to reduce on the
boundary to the combination J̄ 11

+ Ḡ
11ΓIG11. Thus,

(
J̄ 11

+

)−1 J 11
− is the norm squared of the

Green’s function, i.e. the probability density of the off-shell process.
For an off-shell process or a correlation function the norm-squared has no real functional

meaning. However, we are specifically interested in solutions in the absence of an external
source, i.e. the on-shell correlation functions. In that case the analysis is quite different.
The on-shell condition is equivalent to choosing momenta to saturate the pole in the Green’s
function, i.e. it is precisely choosing dual AdS solutions whose leading external source A±
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vanishes. Then M+ and M− are no longer independent, but M+,0 = δB+/δΨ
(hor)
+ =

− iµγ0

2m+1M−,0S. As a consequence all boundary values of J I−(z0), GI(z0), ḠI(z0) become
proportional; specifically using S = γ0 one has that

J 0
−(z0)|on−shell =

(2m+ 1)
µ

γ0G11(z0)|on−shell (2.30)

is the “on-shell” Green’s function. Now, the meaning of the on-shell correlation function is
most evident in thermal backgrounds. It equals the density of states ρ(ω(k)) = − 1

π ImGR
times the Fermi-Dirac distribution [36]

Triγ0GtF (ωbare(k), k)
∣∣
on−shell

= 2πfFD

(
ωbare(k)− µ

T

)
ρ(ωbare(k)) (2.31)

For a Fermi liquid with the defining off-shell Green’s function (2.1) ωbare(kF )− µ ≡ ω = 0
and ρ(ωbare(k)) = Zz0δ

2(k − kF )δ(ω) + . . .. Thus we see that the boundary value of
J (0)
− (z0)|on−shell = ZfFD(0)δ3(0) indeed captures the pole strength directly times a product

of distributions. This product of distributions can be absorbed in setting the normalization.
An indication that this is correct is that the determining equations for GI , ḠI , J I± remain
unchanged if we multiply GI , ḠI , J I± on both sides with M+,0. If M+,0 is unitary it is just
a similarity transformation. However, from the definition of the Green’s function, one can
see that this transformation precisely removes the pole. This ensures that we obtain finite
values for GI , ḠI , J I± at the specific pole-values ωF , kF where the distributions would
naively blow up.

2.1.1 Boundary conditions and normalizability

We have shown that a normalizable solution to J 0
− from the equations (2.29) correctly

captures the pole strength directly. However, ‘normalizable’ is still defined in terms of an
absence of a source for the fundamental Dirac field Ψ± rather than the composite fields
J I± and GI . One would prefer to determine normalizability directly from the boundary
behavior of the composite fields. This can be done. Under the assumption that the
electrostatic potential Φ is regular, i.e.

Φ = µ− ρz + . . . (2.32)

the “connection” T I is subleading to the connection A near z = 0. Thus the equations of
motion near z = 0 do not mix the various J I±, GI and the composite fields behave as

J I+ = jI3−2mz
3−2m + jI4+

z4 + jI5+2mz
5+2m + . . . ,

J I− = jI5−2mz
5−2m + jI4−z

4 + jI3+2mz
3+2m + . . . ,

GI = II4−2mz
4−2m + II3z

3 + II4+2mz
4+2m + II5z

5 + . . . , (2.33)

with the identification

jI3−2m = Ā+ΓIA+, jI4+
= Ā+ΓIB+ + B̄+ΓIA+, jI5+2m = B̄+ΓIB+ , (2.34)

jI3+2m = Ā−ΓIA−, jI4− = Ā−ΓIB− + B̄−ΓIA−, jI5−2m = B̄−ΓIB− ,

II4−2m = Ā+ΓIA−, II3 = Ā+ΓIB−, I4+2m = B̄+ΓIB−, II5 = B̄+ΓIA− .
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A ‘normalizable’ solution in J I− and thus J 0
− is therefore defined by the vanishing of both

the leading and the subleading term.

3 An AdS black hole with Dirac hair

Having determined a set of AdS evolution equations and boundary conditions that compute
the pole strength Z directly through the currents J (0)

− (z) and GI(z), we can now try to
construct the AdS dual of a system with finite fermion density, including backreaction. As
we remarked in the beginning of section 2.1, the demand that the solutions be normalizable
means that the construction of the AdS black hole solution with a finite single fermion
wavefunction is analogous to the construction of a holographic superconductor [19] with
the role of the scalar field now taken by the Dirac field. The starting point therefore is the
charged AdS4 black-hole background (2.4) and we should show that at low temperatures
this AdS Reissner-Nordström black hole is unstable towards a solution with a finite Dirac
profile. We shall do so in a simplified “large charge” limit where we ignore the gravitational
dynamics, but as is well known from holographic superconductor studies (see e.g. [19–21])
this limit already captures much of the essential physics. In a companion article [37] we
will construct the full backreacted ground state including the gravitational dynamics.

In this large charge non-gravitational limit the equations of motion for the action (2.3)
reduce to those of U(1)-electrodynamics coupled to a fermion with charge g in the back-
ground of this black hole:

DMF
MN = igeNA Ψ̄ΓAΨ ,

0 = eMA ΓA(DM + iegAM )Ψ +mΨ . (3.1)

Thus the vielbein eMA and and covariant derivative DM remain those of the fixed charged
AdS black hole metric (2.4), but the vector-potential now contains a background piece
A

(bg)
0 plus a first-order piece AM = A

(bg)
M + A

(1)
M , which captures the effect of the charge

carried by the fermions.

Following our argument set out in previous section that it is more convenient to work
with the currents J I±(z), GI(z) instead of trying to solve the Dirac equation directly, we
shall first rewrite this coupled non-trivial set of equations of motion in terms of the cur-
rents while at the same time using symmetries to reduce the complexity. Although a system
at finite fermion density need not be homogeneous, the Fermi liquid ground state is. It
therefore natural to make the ansatz that the final AdS solution is static and preserves
translation and rotation along the boundary. As the Dirac field transforms non-trivially
under rotations and boosts, we cannot make this ansatz in the strictest sense. However,
in some average sense which we will make precise, the solution should be static and trans-
lationally invariant. Then translational and rotational invariance allow us to set Ai = 0,
Az = 0, whose equations of motions will turn into contraints for the remaining degrees of
freedom. Again denoting A0 = Φ, the equations reduce to the following after the projection
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onto Ψ± = 1
2(1± ΓZ)Ψ.

∂2
zΦ =

−gL3α

z3
√
f

(
Ψ̄+iγ

0Ψ+ + Ψ̄−iγ0Ψ−
)
,

(∂z +A±) Ψ± = ∓ /T Ψ∓ (3.2)

with

A± = − 1
2z

(
3− zf ′

2f

)
± mL

z
√
f
,

/T =
i(−ω + gΦ)

αf
γ0 +

i

α
√
f
kiγ

i . (3.3)

as before.
The difficult part is to “impose” staticity and rotational invariance for the non-invariant

spinor. This can be done by rephrasing the dynamics in terms of fermion current bilinears,
rather than the fermions themselves. We shall first do so rather heuristically, and then
show that the equations obtained this way are in fact the flow equations for the Green’s
functions and composites J I(z), GI(z) constructed in the previous section. In terms of
the local vector currents6

Jµ+(x, z) = Ψ̄+(x, z)iγµΨ+(x, z) , Jµ−(x, z) = Ψ̄−(x, z)iγµΨ−(x, z) , (3.4)

or equivalently

Jµ+(p, z) =
∫
d3kΨ̄+(−k, z)iγµΨ+(p+ k, z) , Jµ−(p, z) =

∫
d3kΨ̄−(−k, z)iγµΨ−(p+ k, z) .

(3.5)
rotational invariance means that spatial components J i± should vanish on the solution
— this solves the constraint from the Ai equation of motion, and the equations can be
rewritten in terms of J0

± only. Staticity and rotational invariance in addition demand that
the bilinear momentum pµ vanish. In other words, we are only considering temporally
and spatially averaged densities: Jµ±(z) =

∫
dtd2xΨ̄(t, x, z)iγµΨ(t, x, z). Analogous to the

bilinear flow equations for the Green’s function, we can act with the Dirac operator on
the currents to obtain an effective equation of motion, and this averaging over the relative
frequencies ω and momenta ki will set all terms with explicit ki-dependence to zero.7

6In our conventions Ψ̄ = Ψ
†
iγ0.

7To see this consider

(∂ + 2A±)Ψ†±(−k)Ψ±(k) = ∓Φ

f

“
Ψ†−iγ

0Ψ+ + Ψ†+iγ
0Ψ−

”
+
iki√
f

“
Ψ†−γ

iΨ+ −Ψ†+γ
iΨ−

”
. (3.6)

The term proportional to Φ is relevant for the solution. The dynamics of the term proportional to ki is

(∂ +A+ +A−)(Ψ†−γ
iΨ+ −Ψ†+γ

iΨ−) = −2i
ki√
f

(Ψ†+γ
0Ψ+ + Ψ†−γ

0Ψ−) . (3.7)

The integral of the r.h.s. over ki vanishes by the assumption of translational and rotational invariance.

Therefore the l.h.s. of (3.7) and thus the second term in eq. (3.6) does so as well.
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Restricting to such averaged currents and absorbing a factor of g/α in Φ and a factor of
g
√
L3 in Ψ±, we obtain effective equations of motion for the bilinears directly

(∂z + 2A±) J0
± = ∓Φ

f
I ,

(∂z +A+ +A−) I =
2Φ
f

(J0
+ − J0

−) ,

∂2
zΦ = − 1

z3
√
f

(J0
+ + J0

−) , (3.8)

with I = Ψ̄−Ψ+ + Ψ̄+Ψ−, and all fields are real. The remaining constraint from the Az
equation of motion decouples. It demands Im(Ψ̄+Ψ−) = i

2(Ψ̄−Ψ+ − Ψ̄+Ψ−) = 0. What
the equations (3.8) tell us is that for nonzero J0

± there is a charged electrostatic source for
the vector potential Φ in the bulk.

Momentarily we will motivate the effective equations (3.8) at a more fundamental level.
Before that there are several remarks to be made

• These equations contain more information than just current conservation ∂µJ
µ = 0.

In an isotropic and static background current conservation is trivially true as ∂µJµ =
∂0J

0 = −i
∫
dωe−iωtωJ0(ω) = 0 as J0(ω 6= 0) = 0.

• We have scaled out the electromagnetic coupling. AdS4/CFT3 duals for which the
underlying string theory is known generically have g = κ/L with κ the gravitational
coupling constant as defined in (2.3). Thus, using standard AdS4/CFT3 scaling, a
finite charge in the new units translates to a macroscopic original charge of order
L/κ ∝ N1/3. This large charge demands that backreaction of the fermions in terms
of its bilinear is taken into account as a source for Φ.

• The equations are local. From the fundamental point of view, that one considers
finite density in the bulk, this is strange to say the least. Generic multi-fermion
configurations are non-local, see e.g. [38]. These equations can therefore never cap-
ture the full bulk fermion dynamics. Our starting point has been a single fermion
perspective, where the Pauli blocking induced non-locality is absent. In that context
local equations are fine. We have also explicitly averaged over all directions parallel
to the boundary and, as we have shown in the previous section (see also footnote 7),
it is this averaging that tremendously simplifies the equations. The most curious part
may be that this unaveraged set of equations — and therefore also eqs (3.8) — are
all local in the radial direction z. From the AdS perspective a many-fermion system
should be non-local democratically and thus also exhibit non-locality in z, yet from
the CFT perspective where z-dynamics encode RG-flow, it is eminently natural. We
leave the resolution of this paradox to future work.

The justification of using (3.8) to construct the AdS dual of a regular Fermi liquid is the
connection between local fermion bilinears and the CFT Green’s function. The complicated
flow equations (2.29) reduce precisely to the first two equations in (3.8) upon performing
the spacetime averaging and the trace, i.e. J0

± =
∫
d3kTrJ 0

± and I =
∫
d3kTr

(
G11 + Ḡ11

)
.

– 14 –



J
H
E
P
1
0
(
2
0
1
1
)
0
1
7

Combined with the demand that we only consider normalizable solutions and the proof
that J 0

− is proportional to the pole-strength, the radial evolution equations (3.8) are the
(complicated) AdS recasting of the RG-flow for the pole-strength. This novel interpretation
ought to dispel some of the a priori worries about our unconventional treatment of the
fermions through their semi-classical bilinears. There is also support from the gravity side,
however. Recall that for conventional many-body systems and fermions in particular one
first populates a certain set of states and then tries to compute the macroscopic properties
of the collective. In a certain sense the equations (3.8) formulate the same program but
in opposite order: one computes the generic wavefunction charge density with and by
imposing the right boundary conditions, i.e normalizability, one selects only the correct
set of states. This follows directly from the equivalence between normalizable AdS modes
and quasiparticle poles that are characterized by well defined distinct momenta kF (for
ω = ωF ≡ 0). The demand that any non-trivial Dirac hair black hole is constructed
from normalizable solutions of the composite operators (i.e. their leading and subleading
asymptotes vanish8) thus means that one imposes a superselection rule on the spatial
averaging in the definition of JI±:

J0
±(z)|normalizable ≡

∫
d3kΨ̄±(−k)iγ0Ψ±(k)|normalizable

=
∫
d3k δ2(|k| − |kF |)|B(0)

± (k)|2z4+2m±1 + . . . (3.9)

We see that the constraint of normalizability from the bulk point of the view, implies
that one selects precisely the on-shell bulk fermion modes as the building blocks of the
density J0

±.
In turn this means that the true system that eqs. (3.8) describe is somewhat obscured

by the spatial averaging. Clearly even a single fermion wavefunction is in truth the full
set of two-dimensional wavefunctions whose momentum ki has length kF . However, the
averaging could just as well be counting more, as long as there is another set of normalizable
states once the isotropic momentum surface |k| = |kF | is filled. Pushing this thought to
the extreme, one could even speculate that the system (3.8) gives the correct quantum-
mechanical description of the many-body Fermi system: the system which gravitational
reasoning suggests is the true ground state of the charged AdS black hole in the presence
of fermions.

To remind us of the ambiguity introduced by spatial averaging, we shall give the
boundary coefficient of normalizable solution for J0

− =
∫
d3kJ 0

− a separate name. The
quantity J 0

−(z0) is proportional to the pole strength, which via Migdal’s relation quantifies
the characteristic occupation number discontinuity at ωF ≡ 0. We shall therefore call the
coefficient

∫
d3k|B−|2|normalizable = ∆nF .

8One can verify that the discussion in section 2.1.1 holds also for fully backreacted solutions. The

derivation there builds on the assumption that the boundary behavior of the electrostatic potential is

regular. It is straightforward to check in (3.8) that indeed precisely for normalizable solutions, i.e. in the

absence of explicit fermion-sources, when both the leading and subleading terms in J0
± and I vanish, the

boundary behavior the scalar potential remains regular, as required.

– 15 –



J
H
E
P
1
0
(
2
0
1
1
)
0
1
7

3.1 Thermodynamics

At a very qualitative level the identification J0
−|norm(z) ≡ ∆nF z3+2m + . . . can be argued

to follow from thermodynamics as well. From the free energy for an AdS dual solution to
a Fermi liquid, one finds that the charge density directly due to the fermions is

ρtotal = −2
∂

∂µ
F =

−3
2m+ 1

∆nF
z−1−2m

0

+ ρ+ . . . , (3.10)

with z−1
0 the UV-cutoff as before. The cut-off dependence is a consequence of the fact that

the system is interacting, and one cannot truly separate out the fermions as free particles.
Were one to substitute the naive free fermion scaling dimension ∆ = m + 3/2 = 1, the
cutoff dependence would vanish and the identification would be exact.

We can thus state that in the interacting system there is a contribution to the charge
density from a finite number of fermions proportional to

ρF =
−3

2∆− 2
∆nF
z2−2∆

0

+ . . . , (3.11)

although this contribution formally vanishes in the limit where we send the UV-cutoff z−1
0

to infinity.
To derive eq. (3.10), recall that the free energy is equal to minus the on-shell action of

the AdS dual theory. Since we disregard the gravitational backreaction, the Einstein term
in the AdS theory will not contain any relevant information and we consider the Maxwell
and Dirac term only. We write the action as,

S =
∫ 1

z0

√
−g
[

1
2
ANDMF

MN − Ψ̄/DΨ−mΨ̄Ψ
]

+
∮
z=z0

√
−h
(

Ψ̄+Ψ− +
1
2
AµnαF

αµ

)
,

(3.12)
where we have included an explicit fermionic boundary term that follows from the
AdS/CFT dictionary [12] and nα is a normal vector to the boundary. The boundary
action is not manifestly real, but its on-shell value which contributes to the free energy is
real. Recall that the imaginary part of Ψ̄+Ψ− decouples from eqs. (3.8). The boundary
Dirac term in (3.12) is therefore equal to I = 2Re(Ψ̄+Ψ−).

To write the free energy in terms of the quantities µ, ρ and ∆nF , note that the on-shell
bulk Dirac action vanishes. Importantly the bulk Maxwell action does contribute to the
free energy. Its contribution is

Fbulk = lim
z0→0

∫ 1

z0

dzd3x

[
1
2

Φ∂zzΦ
]

on−shell

= − lim
z0→0

∫ 1

z0

dzd3x

[
1

2z3
√
f

Φ(J0
+ + J0

−)
]

on−shell

, (3.13)

where we have used the equation of motion (3.8). This contribution should be expected,
since the free energy should be dominated by infrared, i.e. near horizon physics. Due to
the logarithmic singularity in the electrostatic potential (eq. (3.17) this bulk contribution
diverges, but this divergence should be compensated by gravitational backreaction. At
the same time the singularity is so mild, however, that the free energy, the integral of the
Maxwell term, remains finite in the absence of the Einstein contribution.

– 16 –



J
H
E
P
1
0
(
2
0
1
1
)
0
1
7

Formally, i.e. in the limit z0 → 0, the full free energy arises from this bulk contribu-
tion (3.13). The relation (3.10) between the charge density and ∆nF follows only from the
regularized free energy, and is therefore only a qualitative guideline. Empirically, as we
will show, it is however, a very good one (see figure 1 in the next section). Splitting the
regularized bulk integral in two

Fbulk =
∫ 1

z∗
dzd3x

[
1

2z3
√
f

Φ(J0
+ + J0

−)
]

on−shell

+ lim
z0→0

∫ z∗

z0

dzd3x

[
1

2z3
√
f

Φ(J0
++J0

−)
]

on−shell

,

(3.14)
we substitute the normalizable boundary behavior of Ψ+ = B+z

5/2+m + . . ., Ψ− =
B−z

3/2+m + . . . and Φ = µ− ρz + . . ., and obtain for the regularized free energy

F =Fhorizon(z∗)+ lim
z0→0

∫ z∗

z0

d3xdz

[
−1
2z3

µ|B−|2z3+2m+. . .
]
+
∮
d3x

z3
0

[
−B̄+B−z

4+2m
0 +

1
2
µρz3

0

]
.

(3.15)
Using that B+ = −iµγ0B−/(2m + 1) (eq. (2.10)), the second bulk term and boundary
contribution are proportional, and the free energy schematically equals

F = F horizon + lim
z0→0

∫
d3x

[
3µ

2(2m+ 1)
B̄−iγ

0B−z
1+2m
0 − 1

2
µρ

]
. (3.16)

With the UV-regulator z−1
0 finite, this yields the charge density in eq. (3.10) after one

recalls that B̄− = B†−iγ
0.

With the derived rule that the AdS dual to a Fermi liquid has a nonzero normalizable
component in the current J0

−, we will now construct an AdS solution that has this property:
an AdS black hole with Dirac hair. Ignoring backreaction, these are solutions to the density
equations (3.8). In its simplest form the interpretation is that of the backreaction due to a
single fermion wavefunction, but as explained the spatial averaging of the density combined
with the selection rule of normalizability could be capturing a more general solution.

3.2 At the horizon: entropy collapse to a Lifshitz solution

Before we can proceed with the construction of non-trivial Dirac hair solutions to eqs. (3.8),
we must consider the boundary conditions at the horizon necessary to solve the system.
Insisting that the right-hand-side of the dynamical equations (3.8) is subleading at the
horizon, the near-horizon behavior of J0

±, I, Φ is:

J0
± = Jhor,±(1− z)−1/2 + . . . ,

I = Ihor(1− z)−1/2 + . . . ,

Φ = Φ(1)
hor(1− z) ln(1− z) + (Φ(2)

hor − Φ(1)
hor)(1− z) + . . . . (3.17)

If we insist that Φ is regular at the horizon z = 1, i.e. Φ(1)
hor = 0, so that the electric field is

finite, the leading term in J0
± must vanish as well, i.e. Jhor,± = 0, and the system reduces

to a free Maxwell field in the presence of an AdS black hole and there is no fermion density
profile in the bulk. Thus in order to achieve a nonzero fermion profile in the bulk, we
must have an explicit source for the electric-field on the horizon. Strictly speaking, this
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invalidates our neglect of backreaction as the electric field and its energy density at the
location of the source will be infinite. As we argued above, this backreaction is in fact
expected to resolve the finite ground-state entropy problem associated with the presence
of a horizon. The backreaction should remove the horizon completely, and the background
should resemble the horizonless metrics found in [26, 27, 39]; the same horizon logarithmic
behavior in the electrostatic potential was noted there. Nevertheless, as the divergence in
the electric field only increases logarithmically as we approach the horizon, and our results
shall hinge on the properties of the equations at the opposite end near the boundary, we
shall continue to ignore it here. We shall take the sensibility of our result after the fact, as
proof that the logarithmic divergence at the horizon is indeed mild enough to be ignored.

The identification of the boundary value of J0
− with the Fermi liquid characteristic

occupation number jump ∆nF rested on the insistence that the currents are built out
of AdS Dirac fields. This deconstruction also determines a relation between the horizon
boundary conditions of the composite fields J0

±, I. If Ψ±(z) = C±(1 − z)−1/4 + . . . then
Jhor,± = C2

± and Ihor = C+C−. As the solution Φ(1)
hor is independent of the solution Φ(2)

hor

which is regular at the horizon, we match the latter to the vector-potential of the charged
AdS black hole: Φ(2)

hor = −2gq ≡ gµ0/α. Recalling that Φ(1)
hor = −(Jhor,+ + Jhor,−), we see

that the three-parameter family of solutions at the horizon in terms of C±, Φ(2)
hor corresponds

to the three-parameter space of boundary values A+, B− and µ encoding a fermion-source,
the fermion-response/expectation value and the chemical potential.

We can now search whether within this three-parameter family a finite normalizable
fermion density solution with vanishing source A+ = 0 exists for a given temperature T of
the black hole.

3.3 A BH with Dirac hair

The equations are readily solved numerically with a shooting method from the horizon. We
consider both an uncharged AdS-Schwarzschild solution and the charged AdS Reissner-
Nordström solution. Studies of bosonic condensates in AdS/CFT without backreaction
have mostly been done in the AdS-Schwarzschild (AdSS) background ([19, 20] and refer-
ences therein). An exception is [40], which also considers the charged RN black hole. As is
explained in [40], they correspond to two different limits of the exact solution: the AdSS
case requires that ∆nF & µ that is, the total charge of the matter fields should be dominant
compared to the charge of the black hole. On the other hand, the RN limit is appropriate
if ∆nF � µ. It ignores the effect of the energy density of the charged matter sector on the
charged black hole geometry. The AdS Schwarzschild background is only reliable near Tc,
as at low temperatures the finite charged fermion density is comparable to µ. The RN case
is under better control for low temperatures, because near T = 0 the chemical potential
can be tuned to stay larger than fermion density.

We shall therefore focus primarily on the solution in the background of an AdS RN
black hole, i.e. the system with a heat bath with chemical potential µ — non-linearly de-
termined by the value of Φ(2)

hor = µ0 at the horizon — which for low T/µ should show the
characteristic ∆nF of a Fermi liquid. The limit in which we may confidently ignore backre-
action is Φ(1)

hor � µ0 for T . µ0 — for AdSS the appropriate limit is Φ(1)
hor � T for µ0 � T .
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Figure 1. (a) Temperature dependence of the Fermi liquid occupation number discontinuity ∆nF
and operator I for a fermionic field of mass m = −1/4 dual to an operator of dimension ∆ = 5/4.
We see a large density for T/µ small and discontinuously drop to zero at T ≈ 0.05µ. At this same
temperature, the proxy free energy contribution per particle (the negative of I) vanishes. (b) The
free energy F = F fermion + FMaxwell (eq. (3.12)) as a function of T/µ ignoring the contribution
from the gravitational sector. The blue curve shows the total free energy F = FMaxwell, which is
the sum of a bulk and a boundary term. The explicit fermion contribution Ffermion vanishes, but
the effect of a non-zero fermion density is directly encoded in a non-zero FMaxwell

bulk . The figure also
shows this bulk FMaxwell

bulk and the boundary contribution FMaxwell
bulk separately and how they sum to

a continuous Ftotal. Although formally the explicit fermion contribution Ff ∼ I in equation (3.16)
vanishes, the bulk Maxwell contribution is captured remarkably well by its value when the cut-off
is kept finite. The light-green curve in the figure shows Ff for a finite z0 ∼ 10−6. For completeness
we also show the total charge density, eq. (3.10). The dimension of the fermionic operator used in
this figure is ∆ = 1.1.

3.3.1 Finite fermion density solutions in AdS-RN

Figure 1 shows the behavior of the occupation number discontinuity nF ≡ |B−|2 and the
fermion free-energy contribution I as a function of temperature in a search for normalizable
solutions to eqs.(3.8) with the aforementioned boundary conditions. We clearly see a
first order transition to a finite fermion density, as expected. The underlying Dirac field
dynamics can be recognized in that the normalizable solution for J0

−(z) which has no
leading component near the boundary by construction, also has its subleading component
vanishing (figure 2).9

9Although the Dirac hair solution has charged matter in the bulk, there is no Higgs effect for the bulk

gauge field, and thus there is no direct spontaneous symmetry breaking in the boundary. Indeed one would

not expect it for the Fermi liquid ground state. There will be indirect effect on the conductivity similar

to [27]. We thank Andy O’Bannon for his persistent inquiries to this point.
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Figure 2. The boundary behaviour of J−(0) in for a generic solution (blue) to eqs. (3.8) and a
normalizable Dirac-hair solution (red) for m = −1/4 in the background of an AdS-RN black hole
with µ/T = 128.8. The dotted lines show the scaling z11/2 and z4 of the leading and subleading
terms in an expansion of J0

−(z) near z = 0; the dashed line shows the scaling z5/2 of the sub-
subleading expansion whose coefficient is |B−(ωF , kF )|2. That the Dirac hair solution (red) scales
as the subsubleading solution indicates that the current J0

− faithfully captures the density of the
underlying normalizable Dirac field.

Analyzing the transition in more detail in figure 3, we find:

1. The dimensionless number discontinuity ∆nF /µ2∆ scales as T−δ in a certain temper-
ature range TF < T < Tc, with δ > 0 depending on g and ∆, and TF typically very
small. At T = Tc > TF it drops to zero discontinuously, characteristic of a first order
phase transition.

2. At low temperatures, 0 < T < TF , the power-law growth comes to a halt and ends
with a plateau where ∆nF /µ2∆ ∼ const. (figure 3a). It is natural to interpret this
temperature as the Fermi temperature of the boundary Fermi liquid.

3. The fermion free energy contribution I/µ2∆+1 scales as T 1/ν with ν > 1 for 0 < T <

Tc, and drops to zero discontinuously at Tc. As I empirically equals minus the free
energy per particle, it is natural that I(T = 0) = 0, and this in turn supports the
identification of ∆nF (T = 0) as the step in number density at the Fermi energy.

One expects that the exponents δ, ν are controlled by the conformal dimension ∆.10

The dependence of the exponent δ on the conformal dimension is shown in figure 3a. While
a correlation clearly exists, the data are not conclusive enough to determine the relation
δ = δ(∆). The clean power law T−δ scaling regime is actually somewhat puzzling. These
values of the temperature, TF < T < Tc, correspond to a crossover between the true Fermi
liquid regime for T < TF and the conformal phase for T > Tc, hence there is no clear
ground for a universal scaling relation for δ, which seems to be corroborated by the data
(figure 3b). At the same time, the scaling exponent ν appears to obey ν = 2 with great
precision (figure 3b, inset) independent of ∆ and g.

A final consideration, needed to verify the existence of a finite fermion density AdS
solution dual to a Fermi liquid, is to show that the ignored backreaction stays small. In
particular, the divergence of the electric field at the horizon should not affect the result.

10The charge g of the underlying conformal fermionic operator scales out of the solution.
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Figure 3. (a) Approximate power-law scaling of the Fermi liquid characteristic occupation number
discontinuity ∆nF /µ2∆ ∼ T−δ as a function of T/µ for ∆ = 5/4. This figure clearly shows the
saturation of the density at very low T/µ. The saturation effect is naturally interpreted as the
influence of the characteristic Fermi energy. (b) The scaling exponent δ for different values of the
conformal dimension ∆. There is a clear correlation, but the precise relation cannot be determined
numerically. The scaling exponent of the current I/µ2∆+1 ∼ T−1/ν obeys ν = 2 with great accuracy,
on the other hand (Inset).

The total bulk electric field Ez = −∂zΦ is shown in figure 4a, normalized by its value at
z = 1/2. The logarithmic singularity at the horizon is clearly visible. At the same time,
the contribution to the total electric field from the charged fermions is negligible even very
close to the horizon.11 This suggests that our results are robust with respect to the details
of the IR divergence of the electric field.

The diverging backreaction at the horizon is in fact the gravity interpretation of the
first order transition at Tc: an arbitrarily small non-zero density leads to an abrupt change
in the on shell bulk action. As the latter is the free energy in the CFT, it must reflect
the discontinuity of a first order transition. A full account of the singular behavior at the
horizon requires self-consistent treatment including the Einstein equations. At this level, we
can conclude that the divergent energy density at the horizon implies that the near-horizon
physics becomes substantially different from the AdS2 limit of the RN metric. It is natural
to guess that the RN horizon disappears completely, corresponding to a ground state with
zero entropy, as hypothesized in [26]. This matches the expectation that the finite fermi-
density solution in the bulk describes the Fermi-liquid. The underlying assumption in the
above reasoning is that the total charge is conserved.

11It is of the order 10−4, starting from z = 0.9999. We have run our numerics using values between

1− 10−6 and 1− 10−2 and found no detectable difference in quantities at the boundary.

– 21 –



J
H
E
P
1
0
(
2
0
1
1
)
0
1
7

0.2 0.4 0.6 0.8 1

0.99925

0.9995

0.99975

1

1.00025

1.0005

1.00075

z

E!z"#E!1#2"

0.92 0.94 0.96 0.98 1

1.0002

1.0004

1.0006

1.0008

1.001

1.0012

1.0014

z

E!z"#E!1#2"
! !"!# !"$ !"$# !"% !"%#
!

$

%

&

'
()$!

!$%

*+,

!
-
.
+,
%
!

)

)

! !"!# !"$ !"$# !"% !"%#
!

!"#

$

$"#

%
()$!

!/

*+,

0+
,
%
!
1
$

)

)

2345643789):3;;)<=8>37<>

?(=<-8-7@34)A@7

2345643789)56>>8-7)98-;@7B

?(=<-8-7@34)A@7

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

3.5

4

z

E!z"#E!1#2"

0.92 0.94 0.96 0.98 1

2

2.5

3

3.5

4

4.5

5

z

E!z"#E!1#2"

(a) (b) (c)

Figure 4. (a) The radial electric field −Ez = ∂Φ/∂z, normalized to the midpoint value
Ez(z)/Ez(1/2) for whole interior of the finite fermion density AdS-RN solution (upper) and near
the horizon (lower). One clearly sees the soft, log-singularity at the horizon. The colors correspond
to increasing temperatures from T = 0.04µ (lighter) to T = 0.18µ (darker), all with ∆ = 1.1. (b)
The occupation number jump ∆nF and free energy contribution I as a function of temperature in
AdS-Schwarzschild. We see the jump ∆nF saturate at low temperatures and fall off at high T . An
exponential fit to the data (red curve) shows that in the critical region the fall-off is stronger than
exponential, indicating that the transition is first order. The conformal dimension of the fermionic
operator is ∆ = 1.1. (c) The radial electric field −Ez = ∂Φ/∂z, normalized to the midpoint value
(Ez(z)/Ez(1/2)) for the finite fermion density AdS-Schwarzschild background. The divergence of
the electric field Ez is again only noticeable near the horizon and can be neglected in most of the
bulk region.

3.3.2 Finite fermion density in AdSS

For completeness, we will describe the finite fermion-density solutions in the AdS
Schwarzschild geometry as well. In these solutions the charge density is set by the density
of fermions alone. They are therefore not reliable at very low temperatures T � Tc when
gravitational backreaction becomes important. The purpose of this section is to show the
existence of finite density solutions does not depend on the presence of a charged black hole
set by the horizon value Φ(2)

hor = µ0, but that the transition to a finite fermion density can
be driven by the charged fermions themselves.

Figure 4b shows the nearly instantaneous development of a non-vanishing expectation
value for the occupation number discontinuity ∆nF and I in the AdS Schwarzschild back-
ground. The rise is not as sharp as in the RN background. It is, however, steeper than
exponential, and we may conclude that the system undergoes a discontinuous first order
transition to a AdS Dirac hair solution. The constant limit reached by the fermion density
as T → 0 has no meaning as we cannot trust the solution far away from Tc.

The backreaction due to the electric field divergence at the horizon can be neglected,
for the same reason as before (figure 4c).
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Figure 5. The single-fermion spectral function in the probe limit of pure AdS Reissner-Nordström
(red/yellow) minus the spectrum in the finite density system (blue). The conformal dimension is
∆ = 5/4, the probe charge g = 2, and µ/T = 135. We can see two quasiparticle poles near ω = 0, a
non-FL pole with kprobe

F ' 0.11µ and k∆nF

F ' 0.08µ respectively and a FL-pole with kprobe
F ' 0.18µ

and k∆nF

F ' 0.17µ. The dispersion of both poles is visibly similar between the probe and the finite
density backgroudnd. At the same time, the non-FL pole has about 8 times less weight in the finite
density background, whereas the FL-pole has gained about 6.5 times more weight.

3.4 Confirmation from fermion spectral functions

If, as we surmised, the finite fermion density phase is the true Fermi-liquid-like ground state,
the change in the fermion spectral functions should be minimal as the characteristic quasi-
particle peaks are already present in the probe limit, i.e. pure AdS Reissner-Nordström [11,
12]. Figure 5 shows that quasiparticle poles near ω = 0 with similar analytic properties can
be identified in both the probe pure AdS-RN case and the AdS-RN Dirac-hair solution.
The explanation for this similarity is that the electrostatic potential Φ almost completely
determines the spectrum, and the change in Φ due to the presence of a finite fermion
density is quite small. Still, one expects that the finite fermion density system is a more
favorable state. This indeed follows from a detailed comparison between the spectral
functions A(ω; k) in the probe limit and the fermion-liquid phase (figure 5). We see that:

1. All quasiparticle poles present in the probe limit are also present in the Dirac hair
phase, at a slightly shifted value of kF . This shift is a consequence of the change in
the bulk electrostatic potential Φ due to the presence of the charged matter. For a
Fermi-liquid-like quasiparticle corresponding to the second pole in the operator with
∆ = 5/4 and g = 2 we find kprobe

F − k∆nF
F = 0.07µ. The non-Fermi-liquid pole, i.e.

the first pole for the same conformal operator, has kprobe
F − k∆nF

F = 0.03µ.

2. The dispersion exponents ν defined through (ω −EF )2 ∼ (k − kF )2/ν , also maintain
roughly the same values as both solutions. This is visually evident in the near similar
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slopes of the ridges in figure 5. In the AdS Reissner-Nordström background, the
dispersion coefficients are known analytically as a function of the Fermi momentum:

νkF =
√

2k
2
F
µ2 − 1

3 + 1
6 (∆− 3/2)2 [13]. The Fermi-liquid-like quasiparticle correspond-

ing to the second pole in the operator with ∆ = 5/4 and g = 2 has νprobe
kF

= 1.02 vs.
ν∆nF = 1.01. The non-Fermi-liquid pole corresponding to the first pole for the same
conformal operator, has νprobe

kF
≈ 0.10, and ν∆nF = 0.12.

3. The most distinct property of the finite density phase is the redistributed spectral
weight of the poles. The non-Fermi liquid pole reaches its maximum height about 104,
an order of magnitude less than in the probe limit, whereas the second, Fermi liquid-
like pole, increases by an order of magnitude. This suggests that the finite density
state corresponds to the Fermi-liquid like state, rather than a non-Fermi liquid.

4. As we mentioned in the introduction, part of the reason to suspect the existence
of an AdS-RN Dirac-hair solution is that a detailed study of spectral functions in
AdS-RN reveals that the quasiparticle peak is anomalously sensitive to changes in
T . This anomalous temperature dependence disappears in the finite density solution.
Specifically in pure AdS-RN the position ωmax where the peak height is maximum,
denoted EF in [12], does not agree with the value ωpole, where the pole touches
the real axis in the complex ω-plane, for any finite value of T , and is exponentially
sensitive to changes in T (figure 6). In the AdS-RN Dirac hair solution the location
ωmax and the location ωpole do become the same. Figure 6b shows that the maximum
of the quasiparticle peak always sits at ω ' 0 in finite density Dirac hair solution,
while it only reaches this as T → 0 in the probe AdS-RN case.

4 Discussion and conclusion

Empirically we know that the Fermi liquid phase of real matter systems is remarkably
robust and generic. This is corroborated by analyzing effective field theory around the
Fermi surface, but as it assumes the ground state it cannot explain its genericity. If the
Fermi liquid ground state is so robust, this must also be a feature of the recent holographic
approaches to strongly interacting fermionic systems. Our results here indicate that this is
so. We have used Migdal’s relation to construct AdS/CFT rules for the holographic dual of
a Fermi liquid: the characteristic occupation number discontinuity ∆nF is encoded in the
normalizable subsubleading component of the spatially averaged fermion density J0

−(z) ≡∫
d3kΨ̄(ω = 0,−k, z)iγ0Ψ(ω = 0, k, z) near the AdS boundary. This density has its own set

of evolution equations, based on the underlying Dirac field, and insisting on normalizability
automatically selects the on-shell wavefunctions of the underlying Dirac-field.

The simplest AdS solution that has a non-vanishing expectation value for the occupa-
tion number discontinuity ∆nF is that of a single fermion wavefunction. Using the density
approach — which through the averaging appears to describe a class of solutions rather
than one specific solution — we have constructed the limit of this solution where gravita-
tional backreaction is ignored. At low black hole temperatures this solution with fermionic
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Figure 6. (a) Single fermion spectral functions near ω = 0 in pure AdS Reissner-Nordström (blue)
and in the finite fermion density background (red). In the former the position of the maximum
approaches ω = 0 as T is lowered whereas in the latter the position of the maximum stays close to
T = 0 for all values of T . (b) Position of the maximum of the quasiparticle peak in k-ω plane, for
different temperatures and ∆ = 5/4. The probe limit around a AdS-RN black hole (blue) carries a
strong temperature dependence of the ωmax value, with ωmax,T 6=0 6= 0. In the finite fermion density
background, the position of the maximum (red) is nearly independent of temperature and stays
at ω = 0.

“Dirac hair” is the preferred ground state. Through an analysis of the free energy, we
argue that this gravitational solution with a non-zero fermion profile precisely corresponds
to a system with a finite density of fermions. A spectral analysis still reveals a zoo of
Fermi-surfaces in this ground state, but there are indications that in the full gravitation-
ally backreacted solution only a Landau Fermi-liquid type Fermi surface survives. This
follows in part from the relation between the spectral density and the Fermi momentum of
a particular Landau liquid-like Fermi surface; it also agrees with the prediction from Lut-
tinger’s theorem. Furthermore, the spectral analysis in the finite density state shows no
anomalous temperature dependence present in the pure charged black-hole single spectral
functions. This also indicates that the finite density state is the true ground state.

The discovery of this state reveals a new essential component in the study of strongly
coupled fermionic systems through gravitational duals, where one should take into account
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the expectation values of fermion bilinears. Technically the construction of the full grav-
itationally backreacted solution is a first point that is needed to complete our finding. A
complete approach to this problem will have to take into account the many-body physics
in the bulk. Within the approach presented in this paper, it means the inclusion of addi-
tional fermion wavefunctions, filling the bulk Fermi surface. The realization, however, that
expectation values of fermion bilinears can be captured in holographic duals and naturally
encode phase separations in strongly coupled fermion systems should find a large set of
applications in the near future.
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