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In�uene of disorder on harge transport in stronglyorrelated materials near the metal-insulatortransitionAbstratThe in�uene of disorder on transport properties in strongly orrelated materialshas remained unlear, so far. Strong Coulomb repulsion between the eletrons inpartially �lled valene orbitals an lead to the loalization of the wave funtions -Mott insulating state. How these proesses are modi�ed by the presene of disorderis a very important question, speially having in mind that many strongly orrelatedompounds are non-stoihiometri and, therefore, intrinsially disordered.In this thesis we study the disordered half-�lled Hubbard model within the dy-namial mean �eld theory (DMFT) and its extensions, this is a unique theoretialmethod that is reliable and ontrollable in a wide temperature, disorder and intera-tion range. The DMFT assumes the loal (momentum independent) self-energy, buttakes fully into the aount temporal quantum �utuations. In the lean ase, thistheory is exat in the limit of large oordination number. Tehnially, the DMFTsolution redues to the solution of the Anderson impurity model immersed in theself-onsistently alulated ondution bath.For the ase of weak disorder we used the oherent potential approximationfor solving the disordered half-�lled Hubbard model, where the disorder is takeninto aount by the simple averaging of the loal Green's funtions. The ensembleof the impurity models is solved with the site-independent (averaged) ondutionbath. For the onstant interation, the disorder e�etively indues loal doping,broadens the bands and moving the system away from the Mott transition. Theresistivity urves have the same non-monotoni temperature dependene near theMott transition as in the lean ase. The maximal metalli resistivity exeeds thequasi-lassial Mott-Io�e-Regel limit by an order of magnitude. Interestingly, theDrude-like peak in the optial ondutivity persists even for temperatures when theresistivity is omparable to the Mott-Io�e-Regel limit.We have determined a universal saling for the resistivity of various orrelatedmetals, whih is based on the existene of the oherene temperature T ∗ inverselyproportional to the e�etive mass. This saling is shown to be valid also on the



metalli side of the metal-insulator transition of diluted two-dimensional eletrongases, Si MOSFETs and GaAs/AlGaAs heterostrutures. This gives strong evidenethat the driving fore for the unusual transport properties in these systems is strongeletron-eletron sattering, and not disorder.To explore strongly disordered systems, we have implemented the StatistialDMFT, whih takes into aount spatial �utuations in the ondution bath. Wehave suessfully applied, for the �rst time, the Statistial DMFT method on the�nite size ubi lattie. We determined that the �nite size e�ets are negligible al-ready on the lattie with 6× 6× 6 sites (exept at the lowest temperatures, deep inthe Fermi liquid regime). Then we onentrated on a single realization of disorderon the lattie of size 6 × 6 × 6 using the Continues Time Quantum Monte Carlo(CTQMC) as the impurity solver, and the analytial ontinuation by the maximumentropy method in order to obtain loal quantities on the real frequeny axis. Weon�rmed that the disorder is strongly sreened on the metalli side of the MottMIT and that the inelasti sattering is dominant at �nite temperatures. We de-�ned a loal resistivity and proposed a resistor network method for alulating thed resistivity. This approah is justi�ed by the observation that the inter-site or-relations are very weak and the inoherent sattering dominant. We identi�ed twotypes of sites: strongly orrelated - with the loal oupation lose to 1, and weaklyorrelated - away from loal half-�lling. Non-monotoni temperature dependenein the resistivity originates from strong temperature dependent loal resistivity onstrongly orrelated sites.Keywords: strong orrelations, disorder, Mott metal-insulator transition, dynam-ial mean �eld theorySienti� �eld: PhysisResearh area: Condensed matter physisUDC number: 538.9(043.3)



Utiaj neureÆenosti na elektronski transport ujako korelisanim materijalima blizumetal-izolator prelazaSa�etakUtiaj neureÆenosti na transportne osobine jako korelisanih materijalaje do sada ostao nerazjax�en. Jako Kulonovo odbija�e meÆu elektronima nadelimiqno popu�enim valentnim orbitalama mo�e dovesti do lokalizaijetalasne funkije - Motovog izolatorskog sta�a. Kako se Motov metal-izolatorprelaz me�a u prisustvu neureÆenosti je veoma va�no pita�e, posebno imaju�iu vidu da su mnogi jako korelisani materijali nestehiometrijska jedi�e�a paje neureÆenost, odnosno odstupa�e od idealne periodiqnosti, neizbe�no.U ovoj tezi je prouqavan neureÆeni polupopu�eni Habardov model u okvirudinamiqke teorije sred�eg po	a (DMFT) i �enih uopxte�a. DMFT je jedin-stven teorijski metod koji je pouzdan i kontrolisan u xirokom intervalutemperatura, interakija i jaqine neureÆenosti. DMFT tretira samo lokalneinterakione korelaije, ali u potpunosti uzima u obzir vremenske (kvantne)fluktuaije kroz frekventnu zavisnost sopstvene energije Σ(ω). U qistomsluqaju teorija je taqna u limesu velikog koordinaionog broja. DMFT jed-naqine se svode na rexava�e modela Andersonove neqisto�e uro�enog u samo-usaglaxeno izraqunato po	e provodnih elektrona.U sluqaju slabe neureÆenosti koristili smo aproksimaiju koherentnogpotenijala pri rexava�u jednaqina za neureÆen polupopu�en Habardov model.U ovom pristupu neureÆenost se uraqunava jednostavnim usred�ava�em lokalneGrinove funkije. Hibridizaiona funkija (dinamiqko sred�e po	e provod-nih elektrona) je pri tome ista za svaki qvor rexetke. Pri konstantnojinterakiji, neureÆenost efektivno xiri provodnu zonu i sistem uda	avaod Motovog prelaza. Krive otpornosti imaju sliqnu nemonotonu temperaturnuzavisnost u blizini Motovog prelaza kao i u qistom sluqaju. Vrednost za mak-simalnu metalnu otpornost prelazi kvazi-klasiqnu Mot-Jofe-Regel graniuza red veliqine. Drudeov pik u optiqkoj provodnosti opstaje qak i kada jeotpornost uporediva sa Mot-Jofe-Regel graniom.Utvrdili smo univerzalno skalira�e krivih otpornosti u funkiji tem-



perature, za razliqite jako korelisane materijale, usled postoja�a tempera-ture koherenije T ∗ obrnuto proporionalne efektivnoj masi u blizini Mo-tovog prelaza. Ovo skalira�e va�i i na metalnoj strani metal-izolatorprelaza u razreÆenom dvodimenzionom elektronskom gasu u siliijumMOSFET-ima i GaAs heterostrukturama. Ovo sna�no ukazuje da je transort uxirokom intervalu temperatura odreÆen jakim elektron-elektron raseja�em,a ne poslediom neureÆenosti.Za prouqava�e jako neureÆenog sistema, primenili smo statistiqku DMFT,koja uzima u obzir prostorne fluktuaije u hibridizaionoj funkiji. Poprvi put smo primenili ovaj metod na nenultoj temperaturi i na konaqnojkubnoj rexetki. Utvrdili smo da su efekti konaqnosti rexetke zanemar	ivive� na rexetki 6 × 6 × 6 (osim na najni�im temperaturama, duboko u re�imuFermijeve teqnosti). Zatim smo se konentrisali na jednu realizaiji neure-Æenosti na rexetki dimenzija 6× 6× 6 koriste�i kvantni Monte Karlo metodza rexava�e Andersonovog modela i analitiqko produ�e�e metodom maksi-malne entropije u i	u dobija�a lokalnih veliqina na realnoj frekventnojosi. Utvrdili smo da je neureÆenost sna�no ekranirana na metalnoj straniMotovog metal-izolator prelaza i da je mehanizam neelastiqnog (elektron-elektron) raseja�a dominantan na konaqnim temperaturama. Definisali smolokalnu otpornost i uveli metod mre�e otpornika za izraqunava�e otpora.Ovaj pristup je opravdan obzirom da su korelaije elektrona na susednimqvorovima rexetke veoma slabe u re�imu jakog neelastiqnog raseja�a. Uoqilismo dve vrste elektrona: jako korelisane sa lokalnom popu�enox�u blizu vred-nosti 1, i slabo korelisane sa popu�enox�u koja znatno odstupa od vrednosti1. Nemonotona temperaturna zavisnost u otpornosti potiqe od temperaturnezavisnosti raseja�a elektrona na jako korelisanim qvorovima rexetke.K	uqne reqi: jake korelaije, neureÆenost, Motov metal-izolator prelaz, di-namiqka teorija sred�eg po	aNauqna oblast: FizikaOblast istra�iva�a: Fizika kondenzovanog sta�a materijeUDK broj: 538.9(043.3)
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1. IntrodutionSolid state physis is very large and fast growing area of researh, driven by on-stant appetite of industry for new materials with spei�, desired properties. It isalso a quest to disover and understand fundamentally new phases of matter whihmay appear due to the spei� band struture and topology, or eletron-eletronand eletron-phonon interations. Strong eletron-eletron interations may lead tovarious ordered phases at low temperatures and various types of phase transitionsseparating magneti, superonduting, metalli, or insulating phases. This is thesubjet of the physis of strongly orrelated eletroni systems.Strongly orrelated materials inlude various transition metal oxides [1℄, high-temperature superondutors [2℄, iron-based superondutors [3, 4℄, organi harge-transfer salts [5, 6℄, rare earth and atinide intermetallis [7℄ and also many lowdimensional-strutures, like the quantum Hall systems [8℄. Aording to the bandstruture theory, the insulating state appears if the valene band is ompletely �lledwith the eletrons. There are, however, many insulating materials with partially�lled (typially half-�lled) valene band. These insulators are alled Mott insulators.Mott systems an be tuned between the metalli and the insulating state by doping,or hanging external parameters like the magneti �eld or pressure. The Mott metal-insulator transition (MIT) an be tuned by hanging the interation at half-�lling(interation-driven Mott MIT), or by doping (doping-driven Mott MIT). In thisthesis we mostly fous on the interation-driven MIT.It is a very hallenging task to onstrut a suessful theoretial approah do dealwith strongly orrelated systems. The di�ulty omes from the neessity for non-perturbative treatment of the Mott metal-insulator transition. The eletrons on themetalli side of the Mott transition are halfway �between� itinerant and loalized.There are very few tenable theories that takle this problem. The most suessfulone is ertainly the Dynamial mean �eld theory (DMFT) and its extensions.One of the key features of the DMFT is that it represents a nonperturbative1



and well-ontrolled theory whih beomes exat in the limit of in�nite oordinationnumbers (or in�nite dimensionality). The DMFT is truly a quantum many-bodymethod whih fully takes into aount loal orrelations. The loal quantum �u-tuations are ompletely taken into aount, while spatial �utuations are, in thesimplest implementation, frozen. The DMFT method treats low energy oherentand high energy inoherent exitations on the equal footing, whih is essential for astudy of the phase diagram in the whole range of parameters.The biggest initial suess of the DMFT was a desription of the interation-driven Mott transition in the half-�lled Hubbard model [9℄. The DMFT phasediagram is shown in Figure 1, upper panel [10℄. For small interation U the systemis weakly orrelated metal. As U inreases, it beomes a strongly renormalized

Figure 1.1: DMFT interation-temperature phase diagram of Hubbard model ob-tained (upper panel) [10℄ and pressure-temperature phase diagram of organi mate-rial κ-(BEDT-TTF)2Cu[N(CN)2℄Cl (lower panel) [5℄. 2



Fermi liquid. At higher temperatures the system behaves as �bad metal�, wherethe transport is dominated by very strong eletron-eletron sattering. For largeinteration U the Mott gap opens. Metalli and insulating solution are separatedby the oexistene region where both solutions an be stabilized. This region endswith the (Uc, Tc) ritial end-point. The same transport regimes are learly seen inthe experiments on orrelated organi salts [5℄, lower panel in Figure 1.All these materials, in �real life�, ontain some imperfetions in struture or om-position. The interplay between the interation and disorder e�ets is partiularlysubtle in strongly orrelated systems, where often is not lear whether the transportproperties are dominated by the interation or by the disorder [11, 12, 13, 14, 15, 16℄.In this thesis we study the disordered Hubbard model within dynamial mean �eldtheory. We partiularly fous on the in�uene of disorder on the transport propertieson the metalli side of the Mott transition.The thesis is organized as follows. Chapters 2 and 3 ontain an introdutionto the dynamial mean �eld theory and its extension to the models with disor-der. Chapter 4 presents a detailed study of the ondutivity in weakly disorderedMott systems. Chapter 5 presents evidene that the transport in low density two-dimensional eletron gases is dominated by the eletron-eletron sattering, whilethe disorder plays a sub-dominant role. Chapter 6 fouses on the study of tempera-ture dependene of the ondutivity in strongly disordered Mott systems. Chapter7 ontains the onluding remarks.
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2. Dynamial mean �eld theory for stronglyinterating eletronsThe eletron wave funtions are well understood in two limits: loalized and itin-erant (forming extended Bloh waves due to the large overlap between the eletronorbitals and leading to formation of the bands). The eletrons in strongly orre-lated materials do not �t into any of this two ases: they annot be treated justlike the plane waves, or purely loalized partiles. The ompetition between strongCoulomb repulsion and kineti energy may lead to the transition between loalizedand itinerant behavior, with subtle features in the spetral density near the MIT.The simplest model for strongly orrelated materials is the Hubbard model.Despite its simple form, it desribes various phases of matter depending on theparameter values and lattie struture. It is rigorously solved only in the two ases:in one-dimension [17℄ and in the limit of in�nite oordination number (or in�nitedimension) using the dynamial mean �eld theory (DMFT) [18℄.
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2.1 HUBBARD MODEL2.1 Hubbard modelSingle orbital Hubbard model is the minimal lattie model for strongly orrelatedeletroni systems, proposed by Hubbard in 1963. [19, 20℄. The Hubbard modelHamiltonian onsists of the hopping (kineti energy) term and the on-site interationterm whih originates from the Coulomb repulsion of two eletrons (with spin upand spin down) on the same orbital,
H = −

∑

ij,σ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓ − µ
∑

iσ

niσ. (2.1)Indexes i and j run through the lattie sites, and σ is the spin index. The operators
c†iσ and ciσ reate and annihilate the eletron with the spin σ at the site i and
niσ = c†iσciσ is the partile oupation number operator. The kineti energy termis determined by the hopping parameters tij, where usually it is enough to onsiderjust the nearest neighbor hopping. The strength of the Coulomb repulsion is givenby the Hubbard parameter U . A model with the short-range interation U is mostrealisti in the ase of d or f eletrons whih have relatively small orbital radius,and its further justi�ed by the e�et of harge sreening.

Figure 2.1: Shemati representation of the Hubbard model.Despite its simpliity, this model exhibits a very rih phase diagram. Depending5



2.1 HUBBARD MODELon the parameters, the shape of the lattie and temperature, various phases of matteran be stabilized: metalli, Mott insulating, ferromagneti or antiferromagneti,and even d-wave superonduting phase. The most striking onsequene of strongeletroni orrelations is the loalization of the eletroni wave funtions due to theCoulomb repulsion - Mott insulating state whih is the main fous of this thesis.The Hubbard model is well explored in one dimension [17℄, where it is exatlysolvable and where we have a variety of theoretial tools at disposal, neessary forsystemati study. In two or three dimensions it is often impossible to distinguishwhether the theoretial predition re�ets the true nature of the Hamiltonian, ratherthan an artifat of approximation used for its solution. The origin of these uner-tainties is in the nonperturbative nature of the problem and in the existene ofseveral ompeting phases for the ground state solution.An important step forward in the study of the Hubbard model was a developmentof the dynami mean �eld theory (DMFT) around twenty years ago [18℄. Thismethod treats only loal orrelations and thus the self-energy is only frequeny-dependent, Σ(k, ω) → Σ(ω). Therefore, the DMFT takes fully into aount temporal(quantum) �utuations, while spatial �utuations are negleted. It beomes anexat theory in the limit of in�nite oordination number or, equivalently, in�nitedimensions. This approah allows treatment of the low energy (oherent) and thehigh energy (inoherent) exitations on the equal footing. This makes DMFT aunique method in a study of strongly orrelated eletroni systems.The great suess of the DMFT in�uened development of several extensionssuitable for a di�erent types of problems. Cluster DMFT is developed in order toinlude non-loal orrelations and to reintrodue momentum-dependene into to theself-energy [21, 22℄. This has led to important advanes in understanding the physisof the uprates [23℄. The multi orbital DMFT turns out to be partiularly usefulfor the investigations of transition metal oxides, inluding the iron based superon-dutors [24℄. For the investigation of the hetero-strutures and layered materialsthe inhomogeneous DMFT is developed [25℄. Further, the bosoni exitation of thebath an be taken into aount using the extended DMFT (EDMFT). The DMFTmethod has been generalize also to the time-dependent [26℄ and bosoni Hubbardmodels. The extension to disordered systems has also lead to important physialinsights [27, 15℄, and this line of work is the main fous of the following hapters inthe thesis. 6



2.2 DYNAMICAL MEAN FIELD THEORY2.2 Dynamial mean �eld theoryDynamial mean �eld theory method was �rst proposed in the pioneering work byMetzner and Vollhardt in 1989 [28℄, as the solution for the Hubbard model on in�nitedimensional lattie (d → ∞). They showed that, with proper saling of the hoppingparameters, the Hubbard model remains meaningful and nontrivial in d → ∞, andthat the solution of the DMFT equations in this limit beomes exat. The DMFTapproah has started to beome widely reognized after the work og Georges, Kotliarand Rozenberg in 1992 [9℄ when they suessfully desribed the Mott metal-insulatortransition using the DMFT, whih is a fully quantum mehanial treatment of theMott transition.In this hapter we will sketh a derivation of the DMFT equations and presentthe basi physial insights from their solution on the example of the single-bandHubbard model.2.2.1 General FormalismDMFT an be seen as an extension of Weiss mean �eld theory[18℄. The main idea isto lower the number of degrees of freedom by approximating the full lattie problemby the on-site e�etive problem (Figure. 2.2). In this approah the single site isembedded in an e�etive medium originating from all other sites. Then the problemredues to the famous Andersony impurity problem and the features of the lattie(dimensionality, hopping parameters) are inluded through the self-onsistent al-ulation of the hybridization bath ∆(ω). The impurity problem remains a quantummany-body problem, in ontrast to the lassial mean �eld theories. This approahfreezes spatial �utuations, but fully takes in aount all loal, temporal �utua-tions (hene the name �dynamial"). By the onstrution, DMFT is exat in thelimit of in�nite lattie oordination number or, equivalently, in the ase of in�nitedimensions. It is important to have in mind that even for three dimensional ubilattie with the oordination number z = 6, DMFT is a very good approximation(exept at very low temperatures), and therefore a very useful method in a study of�nite dimensional strongly orrelated materials.The partition funtion Z of the Hubbard model 2.1 an be represented as a
7



2.2 DYNAMICAL MEAN FIELD THEORY

Figure 2.2: Lattie is replaed by a single site problem oupled to the external bathde�ned by all other sites.funtional integral over the Grassmann variables
Z =

∫ ∏

i

Dc†iσDciσ exp(−S) , (2.2)
S =

∫ β

0

dτ

[
∑

i,σ

c†iσ(τ)(
∂

∂τ
− µ)ciσ(τ) −

∑

ij,σ

tijc
†
iσ(τ)cjσ(τ)+

∑

i

Uni↑(τ)ni↓(τ)

]
, (2.3)where S is the ation, ciσ and c†iσ are the Grassmann variables and β is inverseprodut of the temperature and the Boltzmann onstant, β = 1/kBT . In orderto alulate partition funtion, we have to transform the ation into more suitable
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2.2 DYNAMICAL MEAN FIELD THEORYform. Following the spirit of DMFT, we separate the ation into three parts,
S0 =

∫ β

0

dτ

[
∑

σ

c†0σ(τ)(
∂

∂τ
− µ)c0σ(τ) + Un0↑(τ)n0↓(τ)

]
, (2.4)

S(0) =

∫ β

0

dτ

[
∑

i6=0,σ

c†iσ(τ)(
∂

∂τ
− µ)ciσ(τ) −

∑

i6=0,j 6=0,σ

tijc
†
iσ(τ)cjσ(τ) ,

+
∑

i6=0

Uni↑(τ)ni↓(τ)

]
. (2.5)

Sc = −
∫ β

0

dτ

[
∑

i,σ

ti0c
†
iσ(τ)c0σ(τ) + t0ic

†
0σ(τ)ciσ(τ)

]
. (2.6)The �rst term, S0, ontains all loal degrees of freedom of the hosen site, theseond one, S(0) (avity term), inludes all other degrees of freedom and third term,

Sc, ontains the oupling between the �rst two. After few steps of simple algebraand integrating out all degrees of freedom, exept these on the one hosen site i = 0(impurity), we obtain the e�etive ation
Seff = S0 +

∞∑

n=1

∑

i1,...,jn,σ

∫
ti10...t0jn

c†0σ(τi1)...c
†
0σ(τin)c0σ(τj1)...c0σ(τjn

)

× G
(0)
i1...jnσ(τi1 ...τin , τj1 ...τjn

) + const. (2.7)Here, the onneted n-point Green's funtion of the bath degrees of freedom isintrodued as
G

(0)
i1...jnσ(τi1 ...τin , τj1...τjn

) = 〈Tτci1σ(τi1)...cinσ(τin)c†j1σ(τj1)...c
†
jnσ(τjn

)〉(0). (2.8)Averaging 〈〉(0) is arried over the avity ation S(0) and Tτ is the imaginary timeordering operator. At this point, the derived e�etive ation is very ompliated andnot very useful for appliations, but how it evolves in the limit of in�nite dimensions?In order to ensure a proper behavior of the kineti and interation energy terms, toremain of the same order of magnitude in d → ∞ limit, one an sale the hoppingamplitude as tnew = t/
√

2d. The one partile Green's [29℄ funtion Gij , whih oursin the Eq. 2.7, is proportional to t|i−j| ∼ 1/d|i−j|/2. The two partile Green's funtion
Gijkl sales as 1/(d|i−j|/2d|i−k|/2d|i−l|/2). If we reall the e�etive ation from Eq. 2.7,we an establish that the �rst term ontaining the one partile Green's funtion is of9



2.2 DYNAMICAL MEAN FIELD THEORYthe order of 1 (prefator t2 times t2 from Gij and summations over i and j providesa fator d2 whih anels the �rst two). To be more preise, Gij is proportional to
t2 when i and j are the nearest neighbors of the site 0. In all other ases Green'sfuntion is even smaller. Similar onsideration shows that the next term in thesummation in Eq. 2.7 is of the order of 1/d and all others are even smaller in thelimit of large dimensions.Previous disussion allows us to keep just the �rst (one-partile) term of thee�etive ation (2.7) in the large d limit

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

c+
0σ(τ)G−1

0 (τ − τ ′)c0σ(τ ′) + U

∫ β

0

dτn↑(τ)n↓(τ) . (2.9)
G−1

0 (τ − τ ′) is a quantum generalization of the Weiss �eld and it is given by
G−1

0 (τ − τ ′) = −(
∂

∂τ
− µ)δττ ′ −

∑

ij

ti0t0jG
(0)
ij (τ − τ ′) . (2.10)This quantity desribes the loal e�etive dynamis, or in the other words, quantum�utuations between four available atomi states: |0〉, | ↑〉, | ↓〉, | ↑↓〉. The maindi�erene from the lassial mean �eld ase is that here the dynamial mean �eld isa funtion of time (frequeny), instead of just a number. This dependene is ruialfor full inlusion of loal quantum �utuations, whih is the main advantage of theDMFT. G0 plays the role of the noninterating Green's funtion in the e�etiveation Seff , but it should not be onfused with the noninterating (U = 0) loalGreen's funtion of the lattie.We an express the avity Green's funtion from Eq. 2.10 in terms of the loalGreen's funtions in the following way [30℄:

G
(0)
ij = Gij −

Gi0G0j

G00
. (2.11)This means that in order to obtain the avity Green's funtion, we need to subtratall ontributions of the paths going through the site 0, from the full lattie Green'sfuntion. The denominator G00 is present due to the fat that all losed loopsstarting from the site 0 and ending in 0 are ounted twie (one in Gi0 and again in

G0j).
10



2.2 DYNAMICAL MEAN FIELD THEORYIt is more onvenient to present Eq. 2.10 in the energy-momentum spae,
G−1

0 (iω) = iω + µ −
∑

ij

ti0t0jG
(0)
ij (iω) . (2.12)Sine only the one-partile loal interating Green's funtion survives in the e�etiveation (2.9), the Dyson equation,

Gk(iω) =
1

iω + µ − εk − Σ(iω)
, (2.13)orresponds to

G00(iω) =
∑

k

Gk(iω) =
∑

k

1

iω + µ − εk − Σ(iω)

=

∫
dε

D(ε)

∆(iωn) + G(iωn)−1 − ε
, (2.14)where D(ε) is the noninterating lattie density of states,

D(ε) ≡
∑

k

δ(ε − εk) . (2.15)Here is important to emphasize that self-energy Σ is loal (k independent). Further,if we exploit the identity
εk ≡

∑

j

tije
ik(Ri−Rj) , (2.16)and the relation (2.11), we an express the Weiss �eld in the following form,

G−1
0 (iω) = iω + µ −

(
∑

k

ε2
k
Gk −

(
∑

k
εkGk)

2

G00

)
. (2.17)After few steps of algebra, we obtain the entral equation of the DMFT, onnetingthe Weiss �eld and the lattie Green's funtion

G−1
0 (iω) = Σ(iω) + G−1

00 (iω) . (2.18)To omplete the set of equations that makes DMFT self-onsisteny loop, we need
11



2.2 DYNAMICAL MEAN FIELD THEORYto alulate the impurity Green's funtion,
G00 = Gimpurity(G−1

0 ) . (2.19)2.2.2 Mapping on the Anderson impurity modelThe loal e�etive ation Eq. 2.9 orresponds to the ation for the Anderson impurityimmersed into the noninterating ondution bath G−1
0 (τ−τ ′). This is a famous andvery well studied model in ondensed matter physis. There are several analityialand numerial methods for its solution. However, one has to be aware that thismodel is still rather ompliated to solve. Before brie�y mention the methods forits solution, it is instrutive to also represent this model in the Hamiltonian form:

HAIM = Hatom + Hbath + Hc , (2.20)where,
Hatom = Unc0

↑ nc0
↓ + (ε0 − µ)(nc0

↑ + nc0
↓ ) ,

Hbath =
∑

i6=0,σ

ε̃ic
†
iσciσ ,

Hc =
∑

i6=0,σ

Vi(c
†
iσc0σ + c†0σciσ) . (2.21)

c†0 and c0 operators reate and annihilate a partile at the interating site (impurity),while c†i and ci reate and annihilate partiles in the noninterating onduting bath.
ε̃i are e�etive parameters whih, together with Vi, should be hosen in suh a waythat the impurity Green's funtion oinides with the loal Green's funtion of theHubbard model. The e�etive ation of this model has the same funtional form asderived e�etive ation 2.9, with the di�erene,

G−1
0 (τ − τ ′) = −(

∂

∂τ
− µ)δττ ′ − Gc(τ − τ ′) ,

Gc(τ − τ ′) = −
∑

kσ

|V 2
k
| δττ ′

∂
∂τ

+ ε̃k

. (2.22)We are now in position to omplete the DMFT proedure. Equations 2.18 and2.14, together with
G00 = Gimpurity(G−1

0 ) , (2.23)12



2.2 DYNAMICAL MEAN FIELD THEORY

Figure 2.3: Shemati representation of the self-onsistent DMFT loop.form a losed set of DMFT equations for solving Hubbard model. The Weiss �eld hasto be determined self-onsistently in order to introdue the on-site interation andthe hopping in the bath. There are many available tehniques for solving impuritymodel and obtaining impurity Green's funtion from a given Weiss �eld.2.2.3 Impurity solversTehnially the most di�ult step in the DMFT self-onsisteny loop is solving theAnderson impurity model. This model and its various generalizations have been asubjet of the intense study sine the pioneering work of P.W. Anderson in 1961. [31℄.Various analytial and numerial methods have been developed for its solution. Allof these methods have their advantages but also drawbaks. Among the analytialmethods, the most important are the slave boson methods (whih introdue auxiliarypartiles - slave bosons) [32℄ and seond order perturbation theory in U [9℄. Thenumerial renormalization group (NRG) method allows the exat solution at T = 0,up to the error from the numerial disretization. The exat diagonalization methodreplaes the bath with a �nite number (up to 10) orbitals.For the solution of the AIM at �nite temperatures the most useful are the non-rossing approximation (NCA) [33℄ (or one-rossing approximation - OCA) [34℄ and13



2.2 DYNAMICAL MEAN FIELD THEORYquantum Monte Carlo (QMC) methods - Hirsh-Fye [35℄ and ontinuous time QMC(CTQMC) [36℄. In this thesis we have used NCA (OCA) and CTQMC solver odesdeveloped by K. Haule [34, 36℄, and the seond order in U perturbative solver(Iterative Perturbative Theory - IPT) written in our group.The IPT impurity solver is very fast and an be written both on the real andimaginary (Matsubara) frequeny axis. In the ontext of the DMFT at half-�lledlattie, it beame very popular beause it properly reprodues the limits of weakand strong interation and reprodue all main features of the phase diagram of thesingle orbital half-�lled Hubbard model.Another popular impurity solvers, providing results diretly on the real frequenyaxis are the non-rossing approximation (NCA)[33℄, the one-rossing approximation(OCA) [34℄, or even �symmetrized �nite U� NCA (SUNCA) [34℄. These solvers arebased on the seond order self-onsistent perturbation theory in the hybridizationfuntion. The OCA has one more generating Feynman diagram for the self-energythan the NCA, whih improves the solution, espeially in the �nite U ase. Oneof the main drawbaks of these methods is failing to reprodue the Fermi-liquidbehavior at lowest temperatures. An advantage is that they give results diretlyon the real frequeny axis whih is neessary for the alulation of the transportproperties. They an also be relatively easily generalized to the multi orbital aseand they are typially less time onsuming than the QMC methods.The most superior impurity solver is the ontinuous time quantum Monte Carlo(CTQMC) [36, 37℄ whih is based on the sampling through the spae of the Feynmandiagrams in ontinuous time. In the strong oupling implementation, the perturba-tive expansion is done with respet to the hybridization (hopping t), while the loal(atomi) part is treated exatly. It is important to emphasize that this method is,in priniple, exat sine the Feynman diagrams are sampled to all orders. The onlyerror omes from the statistial QMC noise. It is ruially that the method doesnot su�er from the minus sigh-problem (at least for a single-orbital ase) and thatthe method an be relatively easy generalized to the ase of multiple orbitals. Theresulting Green's funtions and the self-energies are given on the imaginary axis,whih an be a drawbak if one is interested on spetral funtions and transportproperties. Then the proedure for the analytial ontinuation has to be used - themaximum entropy method for the analytial ontinuation [38℄.
14



2.3 MOTT METAL-INSULATOR TRANSITION2.3 Mott metal-insulator transitionMott metal-insulator transition (Mott MIT) was deteted in numerous ompoundsof transition metal oxides, as well as rear earth and atinide intermetallis, wherethe valene orbitals form partially �lled d or f shells. In these materials, the valeneeletrons sharing the same orbital experiene strong Coulomb repulsion. The repul-sion may loalize the eletrons in the ase of half-�lled orbital and open the gap (theMott gap) at the Fermi level. First theoretial attempts to solve the Hubbard modelwere based on Hartree-Fok mean-�eld theory, whih onsiders interation betweenone eletron and the averaged stati �eld of all other eletrons in the system, withapproximate strong limit methods, like the Hubbard I approximation [30℄. These at-tempts have roughly reovered the insulating phase, but failed to explain numerouspronouned features near the transition.Most of the generi thermodynami and transport properties near the Mott MITan be suessfully aptured by the DMFT and its generalizations. Quite generally,there are two ways that the system an approah the Mot insulating state: by

Figure 2.4: Loal density of states for half-�lled Hubbard model. At small U (upperpanel) the system is weakly orrelated metal. As U inreases the quasipartile peaknarrows and, eventually, the Mott gap opens (lower panel).
15



2.3 MOTT METAL-INSULATOR TRANSITIONinreasing the interation U - interation-driven Mott MIT or, for large U , by doping- doping-driven Mott MIT. We will illustrate main features of the DMFT solutionon the example of the half-�lled Hubbard model.Figure 2.4 shows the �prototype" of the density of states of the strongly orrelatedeletrons. For the large value of the interation U the Mott insulator ours and thedensity of states onsists of two Hubbard bands at the distane U . With dereasinginteration, the quasipartile peak develops at the Fermi level and we enter into themetalli regime with strongly renormalized quasipartile parameters. We have thefamous three peak struture in the density of states. The quasipartile peak appearsdue to the quantum �utuations whih are fully taken into aount within the DMFTmethod. Preisely these strongly renormalized quasipartiles were the missing partin the puzzle of Mott MIT. When we further derease the interation, the Hubbardbands fully merge and the system beomes onventional, weakly orrelated metal.

16



2.4 OPTICAL AND DC CONDUCTIVITY2.4 Optial and d ondutivityTransport properties also relatively easily aessible in experiments due to varietyof tehniques that an probe them very aurately. They an be alulated fromthe orrelation (two-partile Green's) funtions. We will onentrate mostly on theon the optial and d (diret urrent) ondutivity, espeially on diret-urrent (d)ondutivity and resistivity. Here, we will brie�y sketh the derivation of the formulafor the optial ondutivity within the theory of linear response.The optial ondutivity σ(ω) is de�ned by
j(ω) = σ(ω)E(ω) , (2.24)where j is the urrent and E is the eletri �eld. Our task is to alulate the urrent(and therefore the optial ondutivity) in terms of the orrelation funtion. First,we separate the urrent into the paramagneti and the diamagneti part, and afterusing the Coulomb gauge for the vetor potential, we obtain the following relation

j(x, t) = 〈jP (x, t)〉 − ne2

m
A(x, t) , (2.25)where x labels three Desartes oordinates and t is the time. The paramagnetiresponse to the applied �eld an be alulated within the theory of linear response:

〈jα
P (x, t)〉 =

∫
d3x′

∫

t′<t

dt′i〈[jα
P (x, t), jβ

P (x′, t′)]〉Aβ(x′, t′) . (2.26)Equivalently in the Fourier spae,
j(q) =

1

−iν

{
ne2

m
δαβ − i〈[jα(q), jβ(−q)]〉

}
E(q) , (2.27)where q stands for q = (q, ω).In order to omplete the derivation of the optial ondutivity, we need to al-ulate urrent-urrent orrelation funtion. In this thesis, we will brie�y desribederivation presented in the setion IV of Ref. [18℄. The orrelation funtion an beexpressed as an in�nite sum of two-partile vertex funtions. It turns out that thisin�nite sum an be greatly simpli�ed by making the following observations: Sinea wave length of the inident light, used in experiments, is muh shorter than the17



2.4 OPTICAL AND DC CONDUCTIVITYwave length of the eletroni wave vetor, ω/c ≪ kF , we onsider the limit q = 0, orin the other words q = (ω, 0). This observation, together with the limit of in�nitedimensions (widely exploited within DMFT), allows us to drop all vertex orre-tions, keeping only the zeroth order vertex funtion. Calulating the only remainingvertex funtion and using the d → ∞ limit, we obtain the optial ondutivity inthe following form,
σ(iω) =

1

ω

∫ +∞

−∞

dǫ

∫ +∞

−∞

dν

∫ +∞

−∞

dν′D(ǫ)ρ(ǫ, ν)ρ(ǫ, ν ′)
f(ν) − f(ν ′)

ν − ν ′ + iω
. (2.28)Here, D(ǫ) is the noninterating density of states, f(ν) is the Fermi funtion, and

ρ(ǫ, ν) represents the one partile spetral density
ρ(ǫ, ν) = −1

π
ImG(ǫ, ν) =

−1

π

1

ν + µ − ε − Σ(ν)
. (2.29)This equation is rigorously derived for the hyperubi (in�nite dimensional ubi)lattie and it represents a reasonable approximation for the three-dimensional ase,so we will use it in all alulations in the thesis.One of the �rst and best known on�rmations of DMFT was the omparison ofalulated optial ondutivity with the experimentally obtained, from photoemis-sion spetrum of vanadium oxide V2O3. The theoretial alulations qualitativelyreover the main aspets of the experiment [39℄.

Figure 2.5: Photoemission spetrum of metalli vanadium oxide (V2O3) near themetal-insulator transition (irles and squares) and optial ondutivity alulatedfrom DMFT (solid urve) [39℄.
18



2.5 PHASE DIAGRAM OF THE FRUSTRATED HUBBARD MODEL2.5 Phase diagram of the frustrated Hubbard modelThe DMFT phase diagram of half-�lled Hubbard model displays metalli and Mottinsulating phase and several rossover regions. Here we onentrate on the paramag-neti solution (whih is relevant for geometrially frustrated latties, e.g. triangularlattie).

Figure 2.6: DMFT phase diagram of the half-�lled Hubbard model.At the low temperatures and weak interation there is a Fermi liquid (onven-tional metalli) phase. When we inrease the interation U , we reah the region ofoexistene of both metalli and insulating phase and for strong interation we stepinto the Mott insulating phase. The oexistene region ends in the (Uc, Tc) ritialpoint. Tc ≈ 0.03EF whih is typially several tens of Kelvin in the experiments[6℄. At high temperatures, T > Tc, we have bad metal phase haraterized by verystrong eletron-eletron sattering, followed by the �quantum ritial� region [40, 10℄and the insulating region haraterized by the well developed gap and the ativationtemperature dependene of the resistivity.
19



3. Dynamial mean �eld theory for disor-dered strongly orrelated systemsEvery rystal struture has some level of disorder due to the presene of defets,impurities and or dopants. In the last twenty years, di�erent lasses of strongly or-related materials have appeared, many of them having a signi�ant level of disorder.This is partiularly the ase with the omplex materials obtained by doping, i.e. byreplaing an atom of the starting ompound with an atom of another element. Theposition of doped atoms in the lattie is usually random whih introdues disorderedinto the system. Progress of the experimental tehniques allowed systemati studyof the e�ets of disorder in various materials of this kind. We will illustrate this inthe next few examples.A powerful experimental tehnique whih allows loal measurements at the nano-slale is the sanning tunneling mirosopy (STM). Figure 3.1 represents the resultsof suh measurements on high-temperature superondutor obtained by doping of

Figure 3.1: Spatial distribution of the superonduting gap in Bi2Sr2CaCu2O8+δat T = 30 K (left panel) and spatial distribution of the ondutivity in the non-superonduting phase at T = 93 K.[41℄
20



the Mott insulatingmaterial Bi2Sr2CaCu2O8 by oxygen. The �gure displays a spatialdistribution of the superonduting gap at the temperature below ritial tempera-ture Tc and spatial distribution of the ondutivity at temperature above Tc. Thedisorder and inhomogeneity in this system is most likely the onsequene of doping.

Figure 3.2: Resistane of the organi κ− (BEDT −TTF )2Cu(SCN)2 as a funtionof temperature [42℄. Level of disorder is proportional to the X-ray exposure time.An appealing opportunity for a systemati study of the disorder e�ets is byintrodution of strutural defets by X-ray irradiation. Indeed, suh a method isaessible in various organi harge-transfer salts. The temperature dependeneof the resistane of the quasi two-dimensional organi material κ − (BEDT −
TTF )2Cu(SCN)2 for di�erent irradiation exposure times is shown in Figure 3.2.The disorder strength is diretly orrelated with the X-ray exposure time (longerexposure time leads to more disordered system).Another group of materials where both the interation and disorder play an im-portant role are diluted two-dimensional eletron gasses in Si-MOSFETs and ultra-lean GaAs heterostrutures. These systems display very sharp metal-insulator tran-sition by tuning the onentration of harge arriers, see Figure 3.3. There is stillontroversy regarding the nature or even the driving fore for this MIT transitionand we will turn our attention toward this question Chapter 5.The understanding of physial proesses in the regime where both the eletron-21



Figure 3.3: Resistivity of two-dimensional eletron gas in Si-MOSFET as a funtionof temperature for di�erent eletron onentrations.eletron orrelations and the disorder are strong is one of the most important openproblems in the modern ondensed matter physis. Explanation of the physialproperties of strongly orrelated disordered materials poses a major hallenge, andalso holds a promise for new tehnologial appliations.There are few theoretial attempts to provide insight into the transport andthermodynami properties of strongly disordered orrelated systems [43℄. In thisthesis, we will follow the approah of the dynamial mean �eld theory, generalizedin order to treat disordered systems. Most of the theoretial works on this subjethave been restrited, so far, to binary disorder distribution [44℄, or low temperatureswhere the DMFT has been extended in order to inorporate the Anderson loaliza-tion e�ets [27, 45, 46℄. The generalized DMFT equations were usually solved withthe approximate slave boson approah whih is restrited to zero temperature, andan only indiretly address the �nite temperature properties. The �nite tempera-ture transport properties in disordered systems, typially dominated by inoherentproesses, is the main fous of the thesis.In this hapter, we brie�y review several generalizations of the DMFT method.22



The �rst method of treating the disorder tehnially redues to simple averagingof Green's funtions over an ensemble of impurities in the DMFT self-onsistenyloop. This is the simplest approah whih in the non-interating limit redues tothe oherent potential approximation (CPA). The Anderson loalization e�ets anbe inluded through the approximate Typial medium theory. The spatial �utu-ations in disordered �nite dimensional systems are fully taken into aount withinthe Statistial DMFT (StatDMFT), where the only approximations remains theassumption of the loality of the self-energy.
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3.1 DISORDERED HUBBARD MODEL (DHM)3.1 Disordered Hubbard model (DHM)For the purpose of theoretial investigation of the disorder e�ets in strongly orre-lated materials, we onsider the half-�lled single-orbital Hubbard model with site-diagonal disorder and nearest neighbor hopping, given by the Hamiltonian
H = −

∑

ij,σ

ti,jc
†
iσcjσ + U

∑

i

ni↑ni↓ +
∑

iσ

viniσ − µ
∑

iσ

niσ. (3.1)Here ti,j is the hopping amplitude, U the interation strength, c†iσ is the reationoperator, and niσ = c†iσciσ the oupation number operator on site i for spin σ. Theglobal oupation number is enfored by the hemial potential µ. In this thesis wewill onentrate on half-�lled systems sine we are primarily fouses on a study ofinteration-driven Mott transition. The disorder is modeled by random energies vitaken from uniform distribution in the interval (−W/2, W/2). Most of the featuresof the disordered Hubbard model are expeted to be insensitive to the partiularform of the disorder distribution. Physially, the site disorder (random potential)an be due to the impurity atoms or dopants having di�erent having di�erent orbitalenergy levels.Following the DMFT proedure, it is possible to redue the disordered Hubbardmodel to the Anderson impurity model in a self-onsistently determined ondutionbath. Unlike to the lean ase, in the presene of disorder, we need to onsideran ensemble of impurities. There are several ways to set up the self-onsistenyequations for the alulation of the site-dependent ondution bath.
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3.2 COHERENT POTENTIAL APPROXIMATION FOR THE CORRELATED ELECTRONS3.2 Coherent potential approximation for the or-related eletronsIn the oherent potential approximation (CPA) of the DMFT model, we hoose Nvalues for site-disorder from the given distribution and solve a set of N Andersonimpurity problems (one for eah on-site energy). The ondution (hybridization)bath is obtained in the proess of averaging over the disorder and it remains thesame for eah site within the CPA approah. In the non-interation limit, themethod redues to the well studied CPA equations for non-interating disorderedeletrons, whih is formally exat in the limit of large oordination number [47℄.The entral quantity is the loal Green's funtion,
Giσ(τ − τ ′) = −〈Tciσ(τ)c†iσ(τ ′)〉Si

eff

, (3.2)whih is a site-dependent quantity in the presene of disorder. The loal e�etiveation is given by
Si

eff = − 1

β

∑

iωn,σ

c†iσ(iωn)[iωn + µ − vi − ∆(iωn)]ciσ(iωn)

+
1

β
U
∑

iωn

n↑(iωn)n↓(iωn), (3.3)where ∆ is the ondution bath whose self-onsistent value will be obtained in theiterative proedure. The quantity that we average over the disorder is the loalGreen's funtion,
Gav(iωn) =

∫
dvP (v)G(iωn, v). (3.4)Though we onsider a ontinuous distribution of disorder P (v), in pratie it issu�ient to take a �nite number of random energies, and the integral is replaedwith a sum. In the ase of uniform disorder

Gav(iωn) =
1

N

N∑

i=1

Gi(iωn). (3.5)The averaged Green's funtion Gav and the ondution bath ∆ determine the
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3.2 COHERENT POTENTIAL APPROXIMATION FOR THE CORRELATED ELECTRONSself-energy through the relation
G−1

av (iωn) = iωn + µ − ∆(iωn) − Σ(iωn), (3.6)analogous to Eq. 2.18. The self-onsisteny ondition follows from the assumptionthat the lattie self-energy oinides with the impurity self-energy. Then the disorderaveraged loal Green's funtion has to be equal to the loal omponent of the lattieGreen's funtion,
Gav(iωn) =

∫
dε

D(ε)

iωn + µ − ε − Σ(iωn)
. (3.7)Here D(ε) is the density of states in the absene of disorder and interation. Equa-tion 3.6 determines new ondution bath whih ompletes the self-onsisteny loop.The sheme of the CPA method is presented on the Figure 3.4.This approah an be safely applied in the regime of weak or moderate disorder.However, it does not take into aount spatial �utuations of the ondution bathand Anderson loalization in the limit of very strong disorder.
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GNFigure 3.4: Shemati representation of the CPA algorithm.
3.2.1 Optial and d ondutivity within CPATaking into aount the onstrution of the disorder treatment approah presentedin setion 3.2, we expet that optial ondutivity assumes form analogous to that for26



3.2 COHERENT POTENTIAL APPROXIMATION FOR THE CORRELATED ELECTRONSthe lean Hubbard model 2.28. Sine we are interested in the orrelation funtionson the real axis, we an perform an analyti ontinuation of Eq. 2.28 to the realaxis,
Re σ(ω + i0+) =

πe2

~ad

∫ +∞

−∞

dǫ

∫ +∞

−∞

dνD(ǫ)ρ(ǫ, ν)ρ(ǫ, ν + ω)
f(ν) − f(ν + ω)

ω
. (3.8)In this ase the one partile spetral density depends of the self-energy obtainedwithin CPA proedure,

ρ(ǫ, ν) =
−1

π
ImG(ǫ, ν) =

−1

π

1

ν + µ − ε − ΣCPA(ν)
, (3.9)where ΣCPA is alulated from averaged Green's funtion (3.6).The d ondutivity is de�ned as the ondutivity at zero frequeny and the dresistivity is just inverse of that,

σ
dc

= Re σ(ω = 0) =
πe2

~ad

∫ +∞

−∞

dε

∫ +∞

−∞

dνD(ǫ)ρ2(ε, ν)
−df(ν)

dν
, (3.10)

ρ
dc

=
1

σ
dc

. (3.11)
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3.3 TYPICAL MEDIUM THEORY3.3 Typial medium theoryThe interplay between Mott and Anderson loalization has been studied on thedisordered Hubbard model within an e�etive typial medium theory (TMT) [45℄. Aruial step in the self-onsistent alulation of the ondution bath, is geometrialaveraging of the loal density of states, in ontrast to arithmeti averaging used inCPA. In this ase, the e�etive DOS is alulated from,
ρtyp(ω) = exp

[∫
dεP (ε) lnρ(ω, ε)

]
, (3.12)and the Green's funtion is obtained from the Hilbert transform,

Gtyp(ω) =

∞∫

−∞

dω′ρtyp(ω
′)

ω − ω′
. (3.13)This typial (geometrially averaged) DOS is the entral quantity in the TMT.The riterion for the Anderson loalization (disorder-driven MIT) is that the typialDOS goes to zero. While the average DOS at the Fermi level is �nite both in a metaland Anderson insulator, typial DOS is �nite (non-zero) in a metal, but vanishes inthe Anderson insulator.The zero temperature phase diagram for disoredred half-�lled Hubbard modelis obtained using the numerial renormalization group (NGR) impurity solver 3.5.Correlated disordered metal is haraterized by nonzero typial DOS at the Fermilevel ρtyp(0). The boundary between this phase and the Anderson insulator is formedby the quantum ritial line Wc(U) at whih the system goes through a seond orderphase transition. The ρtyp(0) is being redued by disorder (for �xed interation) andgoes to zero preisely at Wc. On the other hand, the inrease of the interation for�xed �nite W, restores the value of ρtyp(0), therefore improves the metalliity. Sys-tem experiene the Mott metal-insulator transition for weak to moderate disorder,together with the oexistene region. This transition qualitatively orresponds tothe one in the lean ase. Starting from the lean Mott insulator, for U & Uc, theinrease of disorder restores the metalli phase. The ontinuous transition betweenMott and Anderson insulator has been deteted for large values of interation anddisorder.Despite the fat that this study is performed within e�etive theory it represents28



3.3 TYPICAL MEDIUM THEORY

Figure 3.5: Phase diagram of the disordered Hubbard model at zero temperaturewithin e�etive typial medium theory. Disorder strength and interation are givenin units of 2/3 EF .a good starting ground for all other investigations in this diretion. One of theimportant questions is how this piture evolves with the temperature and are there,and if there are, what are the artifats of the used approximation.
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3.4 STATISTICAL DYNAMICAL MEAN FIELD THEORY3.4 Statistial dynamial mean �eld theoryWe have argued in previous setion that the simple approah like CPA an not giveproper desription of the strong disorder limit. Also many features of TMT solutionsare questionable in this regime. In order to have a method apable to desribe e�etsof disorder in a wide range of parameters, it is neessary to properly inlude spatial�utuations. That an be aomplished by extending the ideas of dynamial mean�eld theory. A brief derivation of suh extension of DMFT will be presented here.We start from disordered Hubbard model Hamiltonian (3.1) with �xed realizationof disorder. If we follow a standard DMFT proedure and we onentrate on apartiular site of the lattie and integrate out all other sites, we obtain the loale�etive ation for arbitrary site. The e�etive ation has exatly the same formwe have already seen in hapter 2 and the same onlusions and the proeduresan be applied here. This will allow us to redue solving of Hubbard model to theproblem of solving an ensemble of Anderson impurity (AI) models. In this ase ourhybridization (bath) funtion will be di�erent for eah site in ontrast to the leanase
∆i(ωn) =

z∑

j,k=1

t2ijG
(i)
jk (ωn). (3.14)Here, z is the oordination number and sums over j and k run over nearest neighborsof the site i. G

(i)
jk (ωn) are the avity Green's funtions, or the lattie Green's funtionswith site i removed,

G
(i)
jk (ωn) =< c†j(ωn)ck(ωn) >(i) . (3.15)Using the analogy with the derivation of the DMFT equations for the lean ase,presented in the hapter 2, Eq. 2.11, the general result (regardless of the disorder)for the avity Green's funtion an be obtained,

G
(i)
jk = Gjk −

GjiGik

Gii
. (3.16)The regular lattie Green's funtion from the previous equation is alulated from,

Glatt(ωg) = [Î(ωg + µ) − ε̂ − Σ̂(ωg) − Ĥclean]−1, (3.17)where, ε̂ and Σ̂ are diagonal matries suh that the elements of ε̂ are just on-siteenergies of eah site, ε̂ii = εi, and self-energy ontains the loal self-energies Σj(ωg)30



3.4 STATISTICAL DYNAMICAL MEAN FIELD THEORY(solutions of eah AIM),
〈i|Σ̂(ωg)|j〉 = Σj(ωg)δij . (3.18)

ˆHclean is the tight-binding Hamiltonian of the lean system (εi = 0).The avity Green's funtion an be obtained in the same way as in the leanHubbard model. Therefore, we an onlude that this proedure is exat in thelimit of in�nite oordination number in the presene of interation, or for arbitraryoordination number for noninterating partiles. In the ase of in�nite oordinationnumber, the bath funtion redues to the simple average over sites, whih leads todestrution of spatial orrelations, whih is essentially the CPA treatment of disorderdesribed in previous setion.In order to allow for Anderson loalization, we need to onsider a �nite lattiesystem. In this ase hybridization funtion an be seen as a funtional of the lattieGreen's funtions for �xed distribution of disorder. The �nite number of sites allowus to keep trak of hybridization funtions on eah site, whih an �utuate signif-iantly from site to site, depending on the disorder strength. Preisely this featureis ruial for apturing the Anderson loalization e�ets.Again, we an establish diret orrelation between our model and ensemble ofAnderson impurity models, sine the e�etive ation has the same funtional form.The solution of eah AI model uniquely de�nes the orresponding loal self-energy
Σi,

Σi(ωn) = ı̇ωn + µ − εi − ∆i(ωn) − (Gloc
ii (ωn))−1, (3.19)where the loal Green's funtion Gloc

ii is alulated in respet to the loal e�etiveation,
〈i|Ĝ(ωg)|i〉 = Gloc

ii (ωn) = 〈c†i (ωn)ci(ωn)〉loc. (3.20)Moreover, the full lattie self-energy assumes the loal form,In the last step, we are de�ning interating lattie Green's funtion using non-interating ("bare") Green's funtion for the same realization of disorder εi.
Gij = G0

ij [εi → εi + Σi(ωn)] (3.21)Here we assumed that the self-energies desribing the interation renormalizationhave a stritly loal harater.Now we have all neessary ingredients to write the iterative proedure of statis-tial DMFT: 31



3.4 STATISTICAL DYNAMICAL MEAN FIELD THEORY1. make an initial guess for eah hybridization funtion ∆i,2. solve the orresponding Anderson impurity model on every site of the lattie,3. use the resulting self-energies Σi to alulate full Green's funtions from Eq. 3.21,4. alulate the new values of ∆i(ωn) from Eq. 3.19,5. repeat the steps 2. to 4. until all ∆i onverge.To get the impression about the alulations involved in the statistial DMFT,we will brie�y omment important features of the algorithm. Again, like in CPAase, the most demanding step is solving AI models (AIM) for every site in the lattiein every iteration. The statistial DMFT results we will present later are obtainedmainly using the CTQMC solver, but the part onerning study of �nite size e�ets(where we performed SDMFT alulation in absene of disorder) is obtained usingthe IPT solver, whih is onsiderably faster. Its usage was neessary for studyinglarge three dimensional latties in reasonable time. Sine the solution of the impurityproblem for eah site is the most demanding step, SDMFT ode is parallelized oversites. The shemati desription of the SDMFT is presented on the following �gure.
Δ ( )i ω

G ( )i ω Δ ( )j ω

G ( )j ω

εi

εj

Figure 3.6: Shemati representation of the statistial DMFT algorithm.
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4. In�uene of disorder on inoherent trans-port near the Mott transitionMost of the theoretial work on the in�uene of disorder on physial propertiesnear the Mott transition have been so far restrited to binary disorder distribution[44℄ or low temperatures, where the DMFT has been extended in order to inor-porate the Anderson loalization e�ets [27, 45, 46℄. Di�erent transport regimesin strongly orrelated materials are, however, identi�ed overing broad temperaturerange. These transport regimes are partiularly lear in di�erent ompounds of κ-family organi harge-transfer salts, see Figure 1.1. These materials have half-�lledondution band with the e�etive Coulomb repulsion omparable to the bandwidth[48℄. The proximity to the Mott metal-insulator transition an be tuned by applyingthe pressure.On the metalli side of the Mott transition, the Fermi liquid transport at lowtemperatures is followed by an inoherent transport at higher temperatures domi-nated by the large sattering rate, and with resistivities an order of magnitude largerthan the Mott-Io�e-Regel (MIR) limit [49, 50, 51, 52℄, whih is the maximal resistiv-ity that an be reahed in a metal aording to the Boltzmann semilassial theory.The resistivity of the MIR limit orresponds to the sattering length of one lattiespaing. From the theoretial point of view, the violation of the MIR ondition andthe appearane of the maximum in the resistivity temperature dependene is noteasy to explain. However, at least for κ-organis, a signi�ant progress has beenreently ahieved when the transport properties were suessfully desribed even onthe quantitative level within the dynamial mean �eld theory (DMFT) [6, 5, 53℄.Very reently, the e�ets of disorder on the optial and d ondutivity of the or-gani harge-transfer salts have been systematially explored by introduing defetsby X-ray irradiation [42, 54, 55℄. The ondutivity has proven to be very sensitive onthe duration of the irradiation, and di�erent physial mehanisms were advoatedto explain suh a behavior [42, 54, 55℄. Sine the disorder is gradually generated33



by X-ray irradiation, the simplest approah of disorder averaging on the level ofoherent-potential approximation (CPA), that we apply in this hapter, should besu�ient to explain the main modi�ations in the optial and d ondutivity ausedby the disorder [11℄. Motivated by the experiments on κ-organis, we alulate theresistivity in a wide temperature range for several levels of disorder. In this Chap-ter we present the results for the temperature dependene of the density of states,optial ondutivity and d resistivity near the Mott transition for the pure and dis-ordered system. Our results are ompared with the experiments on X-ray irradiated
κ-organis. The high temperature results are obtained with OCA impurity solverand CTQMC is used for the lowest temperatures.
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4.1 DENSITY OF STATES AND OPTICAL CONDUCTIVITY4.1 Density of states and optial ondutivityThe phase diagram of fully frustrated half-�lled Hubbard model in DMFT approxi-mation is well known, see Figure 2.6. Here we fouse on the rossover region fromthe Fermi liquid, aross the inoherent metal to the high temperature insulating-likephase, for the values of interation equal and slightly lower than Uc and for severallevels of disorder. We onsider the disoreder half-�lled Hubbard model (see setion3.1)
H = −

∑

ij,σ

ti,jc
†
iσcjσ + U

∑

i

ni↑ni↓ +
∑

iσ

viniσ − µ
∑

iσ

niσ. (4.1)where the disorder is modeled by random energies vi taken from uniform distributionin the interval (−W/2, W/2). Sine the lattie struture enters the DMFT equationsonly through the density of states, the transport properties does not depend muhon the details of the band struture, and we will onsider the hyperubi lattiewhih has the density of states in the form of a Gaussian
D(ε) =

√
2

π
e−2ε2

, (4.2)where the energy is given in units of the half-bandwidth.The entral quantity that we alulate is the optial ondutivity. The details ofthese alulations are presented in the hapter 3. Here we express the ondutivityin units of the Mott-Io�e-Regel limit for minimal metalli ondutivity. The MIRlimit, σ
MIR

, is the ondutivity whih is reahed when the eletron mean free pathbeomes omparable to the lattie spaing, l ∼ a. Aording to the semilassialarguments, the eletrons an satter at most on every atom and the ondutivity ina metal annot be smaller than σ
MIR

. For half-�lled hyperubi lattie (whih hasGaussian density of states), the MIR ondition l = a is equivalent to E
F
τ = 1, where

E
F
is the bare Fermi energy, i.e. half-bandwidth of the noninterating eletrons,and τ−1 is the sattering rate. Here ~ is set to 1. Therefore, the MIR limit is set bya ondition

τ−1
MIR

= −2ImΣ(0+) = 1, (4.3)where Σ is the self-energy measured in units of EF .The density of states and optial ondutivity for a lean system and in a preseneof moderate disorder, W = 1, are shown in Figure 4.1. The disorder e�etively35



4.1 DENSITY OF STATES AND OPTICAL CONDUCTIVITY
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Figure 4.1: Density of states and optial ondutivity as a funtion of frequenyin the lean ase for U = 0.94 Uc|W=0 (upper panel) and disordered ase, U =
0.94 Uc|W=1 (lower panel). Di�erent olors orrespond to the four distintive trans-port regimes (see the text). The insets show the temperature dependene of dresistivity. T , ω and W are given in units of bare EF .inreases the bandwidth and the ritial interation Uc. In our ase, we �nd that
Uc|W=0 = 2.2 and Uc|W=1 = 2.45. The inrease of Uc due to disorder is in agreementwith earlier estimates obtained by iterated perturbation theory [56℄. The ritialtemperature Tc weakly depends on the disorder strength, Tc|W=1 ≈ Tc|W=0 = 0.04,where kB is set to 1. On Figure 4.1 we ompare the data at the same relative value
U/Uc = 0.94, and for several harateristi temperatures. We see that the disorderdoes not lead to qualitative di�erenes and if the interation is the same when saledwith Uc, the density of states and the optial ondutivity are even quantitativelyvery similar.We an identify several regimes of the eletron transport [11℄. At low temperature(green dotted lines and rosses in the insets) the sattering rate, τ−1 = −2ImΣ(0+),36



4.1 DENSITY OF STATES AND OPTICAL CONDUCTIVITY
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MIR

= σ−1
MIR

. At even higher temperatures (violet dashed line and triangle)low frequeny optial ondutivity inreases due to the thermal exitations.Figure 4.2 helps us to further distinguish the mehanism leading to the largeresistivity and its strong temperature dependene. We see that the sattering rategives the main ontribution to the resistivity temperature dependene and ausesthe violation of the MIR limit, Figure 4.2(a), while the quasipartile (Drude) weight
Z = (1 + |∂ReΣ(ω)/∂ω|ω=0)

−1 is almost temperature independent, Figure 4.2(b).The dotted part of the line is an extrapolation of the OCA results to zero tempera-ture. We have also heked that Z depends very weakly on the temperature usingmore reliable CTQMC impurity solver. Therefore, we an onlude that the drivingmehanism for large resistivity is the large sattering rate and not the redution37



4.1 DENSITY OF STATES AND OPTICAL CONDUCTIVITYof the spetral weight near the Fermi level. This feature, already seen in the ex-periments on VO2 [57℄ and harge-transfer salts [53℄, seem to be ommon for thesystems with half-�lled ondution band near the Mott transition. This should beontrasted with the doped Mott insulators where the main reason for the violationof the MIR ondition is a deimation of the Drude peak in the optial ondutivityby the time MIR limit is reahed, whih an be interpreted as a redution of thenumber of harge arriers [49, 52℄.
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Figure 4.3: Temperature dependene of d resistivity for di�erent interation U inthe lean ase, W = 0 (a) and disordered ase, W = 1 (b). U is given in units of
Uc(W ).The results for temperature dependene of d resistivity, ρ

dc
= σ−1(ω → 0), forseveral values of interation U are shown in Figure 4.3. The resistivity is given inunits ρ

MIR
. For larity it is shown on a logarithmi sale. The resistivity in thelean and disordered ase are even quantitatively very similar when the interationis saled with Uc(W ). 38



4.2 INCREASE OF METALLICITY BY DISORDER4.2 Inrease of metalliity by disorderVery reent experiments [42, 54, 55℄ on the harge-transfer organi salts provide arather unique opportunity to study the e�ets of disorder on transport propertieswithout hanging external parameters or hemial omposition. The level of defets(disorder) diretly depends on the time of exposure to the X-rays. The optial andd ondutivity are proven to be very sensitive on irradiation time showing an in-rease in the ondutivity with the time of irradiation. The experiments measuredboth interlayer and in-plane resistivity with similar onlusions. Di�erent physi-al mehanisms were proposed to explain the inrease of ondutivity. Analytis etal. [42℄ proposed a defet-assisted interlayer ondution hannel for the redutionof resistivity, and Sasaki et al. [54, 55℄ proposed that the irradiation leads to thee�etive doping of arriers into the half-�lled Mott insulator.The DMFT has suessfully desribed the transport properties of organi saltseven on the quantitative level [5, 53℄. In order to make a omparison with the ex-periments with irradiation indued defets, we solve the DMFT equations for �xedinteration U and vary the level of disorder W [11℄. The results for d resistivity areshown in Figure 4.4(a). The data for T < 0.01 are obtained using CTQMC impuritysolver. The presene of even a weak disorder signi�antly dereases the resistivityby e�etively moving the system away from the Mott insulator, as explained in theprevious setion. Our data are very similar to the measurements on harge-transfersalt κ-(BEDT-TTF)2Cu(SCN)2 from Ref. [42℄, whih are shown in Figure 4.4(b).We note that these data are for interlayer resistivity while our DMFT alulationorresponds to in-plane transport. However, the interlayer transport is due to ino-herent tunneling whih is proportional to in-plane ondutivity [58℄. Therefore thetemperature dependene of out-of-plane resistivity should follow the temperaturedependene of in-plane resistivity. Indeed, the in-plane optial ondutivity mea-surements on the Mott insulator κ-(BEDT-TTF)2Cu[N(CN)2℄Cl, also show that theMott system beomes more metalli in a presene of disorder. These measurementsshow the transfer of the spetral weight to low frequeny region as the irradiationtime inreases, followed by the ollapse of the Mott gap [54, 55℄.We emphasize that our model, as opposed to the physial mehanism proposedin Ref. [55℄, does not assume an introdution of new harge arriers sine the totalnumber of arriers per site remains equal to one. The loal oupation number,however, depends on the random site potential, and we an say that the system is39



4.2 INCREASE OF METALLICITY BY DISORDER
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4.2 INCREASE OF METALLICITY BY DISORDER
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T = 0.01, U = 2.1, and W = 1.at very low temperatures and our urrent model annot explain the intersetion ofurves in Figure 4.4(b) whih happens at muh higher temperature. The dramatiredution of the elasti sattering is also demonstrated in Ref. [61℄, whih showsthat the inelasti sattering dominates in the inoherent regime. We stress that wedo not assume Matthiessen's rule. This is a salient feature of DMFT, whih anoperate in a regime where onventional approahes to the eletron transport fail.
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4.3 CONCLUSIONS4.3 ConlusionsIn summary, we have examined the in�uene of random potential on the optialand d ondutivity for half-�lled Hubbard model in a viinity of the Mott transi-tion. Our results show, in agreement with the experiments on κ-organis, that thedisorder an make the system e�etively more metalli [11℄. The disorder inreasesthe bandwidth whih inreases Uc and weakens the orrelation e�ets, moves thesystem away from the Mott transition and leads to a derease in the sattering rateand resistivity. We emphasize that the randomness in our model does not hangeglobal doping, as the system remains on average half-�lled, but the number of hargearriers loally deviates from the average value. Therefore, global arrier doping ofa Mott insulator due to irradiation defets, proposed in Ref. [55℄, is not neessaryto make the system more metalli. We also �nd that the maximal possible value ofmetalli resistivity remains more than an order of magnitude larger than the MIRlimit even in a presene of moderate disorder. As in the lean ase, the violation ofthe MIR limit is driven by a large sattering rate due to the eletron-eletron sat-tering, and Drude-like peak in the optial ondutivity persists even at temperatureswhen the resistivity is well beyond the MIR limit.
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5. Sattering mehanism in diluted 2D ele-tron gases: interation vs. disorderThe physial nature of sattering proesses whih ontrol transport represents oneof the most fundamental properties for any material. At the lowest temperaturesthe thermal exitation are few, and elasti impurity sattering dominates. Raisingthe temperature introdues two basi pathways to modify transport. First, elas-ti sattering an aquire a temperature dependene either through the modi�edsreening of the impurity potential, or through dephasing proesses [62, 63℄. Thisgeneral mehanism enapsulates the physial ontent of all �quantum orretions�� both in the di�usive and the ballisti regime � predited within the Fermi liquidframework. Indeed, areful and preise experiments have on�rmed the validity ofthis physial piture for many good metals with weak disorder [62℄. Physially, itrelies on the existene of long-lived quasipartiles within a degenerate eletron gas.The seond route omes into play in instanes where orrelation e�ets due toeletron-eletron interations are signi�ant. Here, the Fermi liquid regime featur-ing degenerate quasipartiles is often restrited to a very limited temperature range
T ≪ T ∗ ≪ TF , well below the �oherene temperature� T ∗, whih itself is muhsmaller then the Fermi temperature TF . In suh materials, whih inlude rare-earthintermetallis [64, 65℄, many transition metal oxides [57℄, and several lasses of or-gani Mott systems [5, 66, 53℄, a broad intermediate temperature regime emerges
T ∼ T ∗ ≪ TF where inelasti eletron-eletron sattering dominates all transportproperties. Suh sattering diretly re�ets the thermal destrution of Landau quasi-partiles � a situation desribing the demise of a oherent Fermi liquid. In thesematerials, in the relevant temperature range, the eletron-phonon sattering is muhweaker than the eletron-eletron one.When a material is tuned to the viinity of any metal-insulator transition, bothdisorder and eletron-eletron interations are of a priori importane. But whih ofthese two sattering mehanisms � elasti or inelasti � dominates the experimen-43



tally relevant temperature range? Answering this question should provide importantlues as to whih of the loalization mehanisms dominate in any given material.Unfortunately, experimental systems permitting su�iently preise tuning of on-trol parameters are generally rather few. An attrative lass of systems where adramati metal to insulator rossover is observed in a narrow parameter range isprovided by 2D eletron gases (2DEG), suh as silion MOSFETs or GaAs/AlGaAsheterostrutures [67, 68, 69℄. One of the most striking features observed in thesesystems is the pronouned resistivity drop on the metalli side of the transition.While onventional, relatively weak temperature dependene is found at high densi-ties (n ≫ nc), very strong temperature dependene is found near the ritial density
nc, roughly in the same density range nc . n . 2nc where other strong orrelationphenomena were observed, e.g. large m∗ enhanement [70℄. Here, pronouned resis-tivity maxima are observed at T ∼ Tmax(n), followed by a dramati resistivity dropat lower temperatures, whose physial origin remains a subjet of muh ontroversyand debate [67, 68, 69℄.In this Chapter we argue that the eletron-eletron sattering dominates thetransport in a broad onentration and temperature range on the metalli side of themetal-insulator transition [12℄ in Si MOSFETS and GaAs/AlGaAs heterostrutures.This onlusion is reahed by: (i) A detailed saling analysis of the metalli resis-tivity urves; (ii) Establishing a similarity in the transport properties of the 2DEGand well-studied strongly orrelated materials near the interation-driven MIT; (iii)Making a omparison of the resistivity urves in 2DEG with those in a simple modelof the Mott MIT. Our onlusions favor the interation-driven (Wigner-Mott) se-nario [71, 72, 73, 74, 75℄ of the MIT in 2DEG and give a guidane for the developmentof a mirosopial theory of inoherent transport in diluted 2DEG.
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5.1 METAL-INSULATOR TRANSITION IN TWO DIMENSIONS5.1 Metal-insulator transition in two dimensionsThe interest for the physis of the strongly-orrelated, disordered systems has beenrenewed sine the beginning of 1990's, due to many unexpeted and puzzling trans-port properties of high mobility silion metal-oxide semiondutor �eld-e�et tran-sistors (MOSFETs). Despite the extensive experimental and theoretial studies,many of the transport properties of these materials remained unlear.In early 1980's there was a wide spread belief that there should be no metal-li phase in (in�nite) two dimensional disordered systems in zero magneti �eld.In the ase of noninterating harge arriers suh result was obtained within thesaling theory of loalization [76℄. This theory predited that as the temperatureapproahes zero, the resistivity beomes in�nite. The growth of resistivity is shownto be logarithmi in the ase of �weak loalization� and exponential for �strongly lo-alized� harge arriers. Subsequent studies have shown that the loalization e�etsinrease even further in the presene of weak interation [77℄. In the opposite limitof the strongly interating partiles the Wigner rystallization ours [78℄. Even asmall amount of disorder, in this ase, leads to the pinning of the Wigner rystalthat makes system insulating. Therefore, the two-dimensional eletron systems wereexpeted to be insulating in both limits: weak (or absent) and very strong inter-partile interation. That question was onsidered as resolved until the experimentson highly diluted 2D eletron gases were performed.Reent availability of high mobility MOSFET samples enabled the systematiresearh of 2D systems in the range of very low eletron densities, typially below
1011 m−2 [79℄. An important result of these studies is the strong temperature de-pendene of the resistivity well below Fermi temperature. In addition, the existeneof the ritial density nc is obtained for whih the resistivity is almost temperatureindependent and it is of the order of the quantum unit of resistane, h/e2 ≈ 25.6 kΩ.Above nc the resistivity dereases with the temperature down to the lowest aessibletemperatures of ∼ 4 mK. All this strongly suggests that there is a metal-insulatortransition at T = 0.The �rst experiments indiating the existene of MIT in 2D eletron systems wereperformed on highly diluted silion MOSFETs [80, 81℄. Signi�ant property of thesematerials was an order of magnitude larger mobility than in previous investigations,reahing more than 4 × 104 m2/Vs at T = 4.2 K. At these very low eletrononentrations the eletron-eletron interation Ee−e beomes dominant and muh45



5.1 METAL-INSULATOR TRANSITION IN TWO DIMENSIONSlarger than the Fermi energy. Estimates of these energies for Si MOSFETs at ns =

1011 m−2 yield
Ee−e ∼

e2

ǫ
(πns)

1/2 ≈ 10meV, (5.1)while
EF =

π~
2ns

2m∗
≈ 0.58meV, (5.2)where e is the eletron harge, ǫ is the dieletri onstant, EF is the Fermi energy,and m∗ is the e�etive eletron mass. Typial values of dimensionless parameter

rs ≡ Ee-e/EF in these samples is above 10. In the very dilute 2D eletron systemsthe formation of the Wigner rystal is expeted, and aording to the numerialsimulation [78℄ this should our at rs ≈ 37 ± 5, and at even higher density in thepresene of disorder [82℄. Hene, these 2D systems an be onsidered as stronglyorrelated eletron liquids at rs ∼ 10.These �ndings were supported by subsequent experiments in diluted 2D eletronsystems like silion MOSFETs with di�erent geometry and oxide thiknesses [83℄and other 2D systems (p-GaAs, n-GaAs, p-SiGe, et.). Typial experimental re-sults [80, 81℄ of the resistivity dependene on the eletron density and temperatureare presented in Figure 3.3. Aforementioned ritial eletron density nc is learlydistinguished together with the metalli family of the urves having ns > nc andinsulating urves with negative slope for ns < nc. The most striking property ishange in resistivity by several orders of magnitude, aused by hange of the on-entration of only a few perent. The temperature dependene of the resistivitybeomes weak above T ∗ ≈ 2 K. At higher densities, of the order of those used in theexperiments in the 1980s, a weak insulating temperature dependene is observed,reminisent of Anderson loalization.
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5.2 SCALING ANALYSIS OF THE RESISTIVITY MAXIMA5.2 Saling analysis of the resistivity maximaThe experimental data reveal well de�ned trends in the density dependene of theresistivity maxima, suggesting a saling analysis. While many di�erent senarios forthe metal-insulator transition predit some form of saling, its preise features mayprovide lues to what mehanism dominates the transport.

Figure 5.1: Resistivity as a funtion of temperature from the experiments on SiMOSFET by Pudalov et al. [84℄.All the urves displaying a resistivity maximum have an almost idential shapeFigure 5.1, strongly suggesting that unique physial proesses are responsible for astrong temperature dependene of the resistivity [12℄ in a large range of onentra-tions. The resistivity maxima are typially observed at temperatures omparableto the Fermi temperature, where a physial piture of long-lived quasipartiles is47



5.2 SCALING ANALYSIS OF THE RESISTIVITY MAXIMAno more valid. Complementary experiments [70, 68℄ on the same material have re-vealed that large e�etive mass m∗ enhanements are observed in the same densityrange. This behavior is a lear signature of strong orrelation e�ets whih, in allknown examples, produe very strong inelasti eletron-eletron sattering in theappropriate temperature range. The eletron-phonon sattering is negligibly smallfor T < TF . 10 K [85℄. Sine a strongly orrelated system is typially haraterizedby a single harateristi energy sale T ∗ ∼ (m/m∗) TF , we expet the saling fun-tion f(x) to assume a universal form, while the saling parameters Tmax ≡ T ∗ and
ρmax to assume a simple, power-law dependene on the e�etive mass m∗. Guidedby these observations, in this Setion we introdue a saling ansatz and perform asaling analysis of the resistivity urves in Si MOSFETs and GaAs heterostrutures.5.2.1 Phenomenologial saling hypothesisIn aordane to what is typially found in other examples of strongly orrelatedmetals with weak to moderate disorder [5℄, we expet the resistivity to assumean additive form, ρ(T ) = ρo + δρ(T ). Here, ρo is the residual resistivity due toimpurity sattering, and the temperature-dependent ontribution δρ(T ) is expetedto be dominated by inelasti eletron-eletron sattering. Based on these generalonsiderations, we propose that the temperature-dependent term assumes a salingform

δρ(T ) = δρmaxf(T/Tmax), (5.3)where δρmax = ρmax − ρo.To test this phenomenologial saling hypothesis, we perform a orrespondinganalysis of experimental data in several systems displaying 2D-MIT [12℄. We startwith the Si MOSFET data [84℄ analyzed in Ref. [86℄. We onentrate on metalliurves below the separatrix C. In the range of onentrations 0.83 < n < 1.10,the resistivity urves have a lear maximum, and niely ollapse with the proposedsaling ansatz, Figure 5.2(a). In fat, we an use the saling ansatz to ollapsealso the data for 1.21 < n < 1.75, where Tmax and ρmax are determined from theleast square �t to the saling urve. Clearly all eight resistivity urves belong tothe same family (have the same funtional form), and thus must be explained by asingle dominant transport mehanism. This onlusion is even more onvining if weapply the same analysis to several di�erent materials, inluding ultra high mobilityGaAs sample, Figure 5.2(b). While the di�usive physis annot possible apply in48



5.2 SCALING ANALYSIS OF THE RESISTIVITY MAXIMA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

δρ
 /
 δ

ρ m
a
x

T / Tmax

a)

n=0.83
n=0.88
n=0.94

n=0.99
n=1.10
n=1.21

n=1.43
n=1.75
DMFT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

δρ
 /
 δ

ρ m
a
x

T / Tmax

b)

n=0.29
n=0.36
n=0.42
n=0.55

p=1.2
p=1.3
p=1.5

p=0.125
p=0.13
p=0.15
p=0.17
p=0.19
p=0.25
DMFT

Figure 5.2: Saled resistivity as a funtion of saled temperature for di�erent eletron(hole) onentrations, for Si MOSFET (a) and GaAs heterostrutures (b). Theexperimental data are taken from Ref. [86℄ (MOSFETs), Ref. [87℄ (p-GaAs/AlGaAs,blue symbols), Ref. [88℄ (n-GaAs/AlGaAs, green symbols), and Ref. [89℄ (p-GaAs,orange symbols). The solid line is the saling funtion obtained for a simple modelof the MIT (see setion 5.4).suh a broad parameter range, we see that the saling form we propose proves tobe an extremely robust feature of all available 2D-MIT systems. This result is verysigni�ant, beause disorder e�ets must be signi�antly weaker in these ultra-leanmaterials, while the interation e�ets are expeted to be even stronger.
49



5.2 SCALING ANALYSIS OF THE RESISTIVITY MAXIMA
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5.2 SCALING ANALYSIS OF THE RESISTIVITY MAXIMA
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5.2 SCALING ANALYSIS OF THE RESISTIVITY MAXIMAoherene temperature is inversely proportional to the e�etive mass, as a landmarkof strong orrelations.5.2.3 Breakdown of the di�usion mode salingWe have suessfully ollapsed resistivity urves in a broad temperature and on-entration range and for several physial realizations of 2DEG. The physial piturebehind the proposed saling is that the 2D MIT is an interation-driven (Wigner-Mott) MIT [71, 72, 73, 74, 75℄, and that the dominant temperature dependene inthe resistivity originates from strong eletron-eletron sattering. Another proposed
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5.2 SCALING ANALYSIS OF THE RESISTIVITY MAXIMA
~/τ . Aording to this piture, a di�erent (ballisti) mehanism for transport isexpeted outside the di�usive regime, presumably leading to a di�erent temperaturedependene, so the proposed saling no longer holds. This analysis was applied to theexperimental data of Ref. [84℄, but was aordingly restrited to only three densitieslosest to the transition. Indeed, if the saling formula is applied in a broaderrange of onentrations, the resistivity urves learly do not ollapse [Figure 5.5.While the Fermi liquid renormalization group alulations are very important inorder to answer a fundamental question of neessary onditions for a true MIT atzero temperature, our analysis emphasizes that the understanding of various diluted2DEG in a broad range of parameters requires the physis beyond the onventionalFermi liquid framework.
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5.3 SCALING IN 3D MATERIALS5.3 Saling in 3D materials
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5.3 SCALING IN 3D MATERIALSthe lattie spaing, and the transport beomes inoherent. The eletron-phononsattering is here muh weaker than the eletron-eletron one. The temperature ofresistivity maximum an be taken as a de�nition of the oherene temperature T ∗[12℄. It is inversely proportional to the e�etive mass, and muh smaller than thebare Fermi temperature, T ∗ ∼ (mb/m
∗) TF . The same saling ansatz as given byEq. 5.3 was used to ollapse the resistivity urves for CeCu6 already in an earlypaper by Thompson and Fisk [64℄.Here we illustrate the similarity in transport properties of these systems and2DEG by saling the resistivity data for heavy fermion UBe13 from Ref. [65℄, Fig-ure 5.6 (upper panel), and for a harge-transfer ondutor κ-(ET)2Cu2(CN)3 Fig-ure 5.6 (lower panel). The ollapse of the resistivity urves is exellent for UBe13, andwell-de�ned trends are seen in κ−(ET)2Cu2(CN)3. Remarkable similarity in resistiv-ity urves in so diverse physial systems like Si MOSFETs, GaAS heterostrutures,heavy fermions and harge-transfer organi ondutors, is in our view, a manifesta-tion of the same physial proesses in the viinity of the interation-driven MIT.
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5.4 SCALING IN THE MICROSCOPIC MODEL OF THE INTERACTION DRIVEN MIT5.4 Saling in the mirosopi model of the intera-tion driven MITHaving phenomenologially established preise and well de�ned saling behavior ofthe experimental urves on the metalli side of the 2D MIT for temperatures near
T ∗, we now address its mirosopi origin. More preisely, we would like to under-stand just how robust this result is. Does it depend on subtle details desribing theinterplay of disorder and interations of 2DEG materials, as suggested in Ref. [92℄,or is it a generi feature of strong orrelation near interation-driven MIT. To answerthis important question we deliberately fous on the simplest mirosopi model forinteration-driven MIT: The lean single-band Hubbard model at half-�lling. Au-rate and quantitatively preise results an be obtained for temperature-dependenttransport for this model within the DMFT approximation [18℄. While the DMFTreprodues Fermi liquid behavior at the lowest temperatures, it is partiularly usefulin the studies of �high temperature� inoherent transport. Results of suh alula-tion, obtained by the Continuous Time Quantum Monte Carlo (CTQMC) impuritysolver [37, 36℄ followed by the analytial ontinuation by the Maximum EntropyMethod[38℄, an be analyzed using preisely the same saling proedure we pro-posed for experimental data. We onentrate on the metalli phase of the Hubbardmodel with the interation parameter U smaller than the value at the ritial end-point Uc. The resistivity urves in Figure 5.7(a) have qualitatively the same formas in 2DEG. The resistivity sharply inreases with temperature, reahes a maxi-mum and than dereases. The temperature of resistivity maximum dereases as thesystem approahes the MIT.Most remarkably, preisely the same saling form as in 2DEG is found to desribeall resistivity urves lose to the Mott transition [12℄ Figure 5.7(b). In addition, we�nd that the saling parameters Tmax and ρmax again display a power law depen-dene on the e�etive mass, Figure 5.8, and even the exponents are similar. Finally,we ontrast the DMFT saling funtion with that obtained from 2DEG experiments.We �nd surprisingly aurate agreement between the DMFT predition for the sal-ing funtion f(x) and experimental data on all available materials Figure 5.2. Weemphasize, however, that our saling hypothesis is valid only in the metalli phasefor U < Uc and for temperatures omparable to T ∗ ∼ 1/m∗. It should be ontrastedwith the saling near the ritial end-point (Uc, Tc) [93, 94℄, or the proposed quantumritial saling in the high-temperature regime above the ritial end-point [40℄. 56



5.4 SCALING IN THE MICROSCOPIC MODEL OF THE INTERACTION DRIVEN MIT
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5.4 SCALING IN THE MICROSCOPIC MODEL OF THE INTERACTION DRIVEN MIT
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5.4 SCALING IN THE MICROSCOPIC MODEL OF THE INTERACTION DRIVEN MITonset of harge order is also found in the 2D extended Hubbard model solved by�nite-T Lanzos diagonalization [96℄. This result is relevant for quarter-�lled layeredorgani materials, whih further supports the importane and generality of the ideaspresented here.
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5.5 SCALING IN THE MODEL WITH DISORDER5.5 Saling in the model with disorderWe have already tested our phenomenologial saling on various strongly orrelatedsystems dominated by the strong eletron-eletron sattering. The phenomenologi-al saling we have proposed is obviously the ommon feature of strongly orrelatedsystems. If this is true it should hold for systems with weak or moderate disor-der. We have tested our saling proedure on the resistivity results in the preseneof disorder. We have onentrate on the regime of strong disorder W = 2.5, butthe physial piture is qualitatively the same as for weak or moderate disorder (seesetion 6.1). The same saling hypothesis holds in this ase. The main e�et of
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5.6 CONCLUSION AND DISCUSSION5.6 Conlusion and disussionIn this Chapter we argued that the emergene of resistivity maxima upon thermaldestrution of heavy Fermi liquids should be regarded as a generi phenomenon instrongly orrelated systems [12℄. We demonstrated that the resulting family of re-sistivity urves typially obeys a simple phenomenology displaying saling behavior.Our detailed model alulations show that all the qualitative and even quantita-tive features of this saling phenomenology are obtained from a mirosopi modelof heavy eletrons lose to the Mott metal-insulator transition. We should stress,however, that the proposed saling behavior obtains - both in our theory and inexperiments - only within the metalli regime not too lose to the transition andthe temperature regime around the resistivity maxima. In ontrast, earlier exper-iments foused on the immediate viinity of the metal-insulator transition, wheredi�erent �quantum ritial� saling was found [81, 67, 83, 98℄. Remarkably, preiselysuh behavior is also found in very reent studies of quantum ritial transport nearinteration-driven transitions [40℄, but this was identi�ed in a di�erent parameterregime than the one studied in the present hapter.Our results provide ompelling evidene that several puzzling aspets of trans-port in low density two-dimensional eletron gases in zero magneti �elds an beunderstood and explained within the Wigner-Mott senario of strong orrelation [71,72, 73, 74, 75℄. This physial piture views the strong orrelation e�ets in the lowdensity 2DEG as the primary driving fore behind the transition, and additional dis-order e�ets as less signi�ant, seondary proesses. In the Wigner-Mott piture theinsulator essentially onsists of interation-loalized magneti moments. Remark-ably, magneto-apaitane measurements of Prus et al. [90℄ show that the behaviorharateristi of loalized magneti moments, χ(T )/n ≈ gµ2
B/T , is seen near theritial density, while only weak Pauli-like temperature dependene was observed athigher density. Very reent experiments on Si MOSFETs �nd that the thermopowerdiverges near the MIT [99℄. The authors argue that divergene of the thermopoweris not related to the degree of disorder and re�ets the divergene of the e�etivemass at a disorder-independent density, behavior that is typial in the viinity of aninteration-indued phase transition. Additional hints supporting this physial pi-ture of 2D MIT are provided by existing �rst priniple Quantum (di�usion) MonteCarlo results for the low density 2DEG of Ceperley [100℄ and others [82, 101, 92℄.These alulations �nd that the orrelated metalli state has an �almost rystalline�61



5.6 CONCLUSION AND DISCUSSIONstruture, thus having very strong short range harge-order (i.e, as seen, for example,in the density orrelation funtion).Within the physial piture that we propose, the inelasti eletron-eletron sat-tering takes entral stage [12, 61, 102℄, in ontrast to disorder-dominated senarios,where the interation e�ets mainly introdue temperature dependene of elastieletron-impurity sattering [63℄. The two physial pitures desribe two ompletelydi�erent sattering proesses, whih are expeted to be of relevane in omplemen-tary but in essentially non-overlapping parameter regimes. Indeed, inelasti satter-ing dominates only outside the oherent Fermi-liquid regime, whih in good metalshappens only at fairly high temperatures. In strongly orrelated regimes that weonsider, the situation is di�erent. Here the Fermi liquid oherene is found only atvery low temperatures T < T ∗ ≪ TF , behavior whih is generally observed in allsystem with appreiable e�etive mass enhanement. The results presented in thishapter provide preise and detailed haraterization of this inoherent regime, re-vealing remarkable oinidene of trends observed in the experiment to those foundfrom the Wigner-Mott piture of the interation-driven metal-insulator transition.Our saling ansatz is proposed based on the physial arguments and the experimen-tal data. While onsistent with simple model alulations for strongly orrelatedeletroni systems, our work does not diretly address spei� mirosopi meh-anism responsible urrent dissipation, a proess that in 2DEG systems should befailitated by impurities and imperfetions [102℄. Still, it provides very strong moti-vation to develop a more realisti mirosopi theory of inoherent transport in thestrongly orrelated regime of diluted 2DEG. This important task remains a hallengefor future work.
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6. Resistivity in strongly disordered systemsnear the Mott transitionThe understanding of the physial proesses in the regime where both the eletron-eletron orrelations and the disorder are strong is one of the most important openproblems in the modern ondensed matter physis. For the ase of noninteratingeletrons, strong enough disorder loalizes the wave funtions even in three dimen-sions and the system beomes Anderson insulator. In the lean strongly interatingsystems the eletrons loalize forming loal moments through the interation- ordoping-driven Mott metal-insulator transition. How these proesses, Anderson andMott loalization, in�uene eah other is a very di�ult physial question. It is alsoa very important question, speially having in mind that many strongly orrelatedompounds are non-stoihiometri and, therefore, intrinsially disordered systems.In this hapter we study the disordered half-�lled Hubbard model within thestatistial DMFT whih is a unique theoretial method that is reliable and ontrol-lable in a wide temperature, disorder and interation range. As a referene valuefor disorder strength, we fous here mostly on W = 2.5 in units of the half band-width D = 6t = 1 for the noninterating ubi lattie (site disorder εi is uniformlydistributed in the interval (−W/2, W/2)). This level of disorder orrespond to theritial value for the Anderson loalization in 3 dimensions for U = 0. The inter-ation, however, sreens the disorder and the system is metalli for W = 2.5 atsmall U . At large U the system faes the Mott metal-insulator transition modi�edby the disorder. Transport properties on the metalli side of suh a metal-insulatortransition are the main fous of this Chapter.
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6.1 COHERENT POTENTIAL APPROXIMATION IN STRONG DISORDER LIMIT6.1 Coherent potential approximation in strong dis-order limitThe CPA approximation displays same trends in strong disorder ase (W = 2.5),as for weak disorder, with an important di�erene that the oexistene region ofmetalli and insulating solutions is muh narrower. The resistivity maximum existsvery near the metal-insulator transition, and greatly exeeds the Mott-Io�e-Regellimit ρ
MIR

(Figure 6.1). ρ
MIR

is again used as the unite of resistivity. For su�ientlystrong interation (larger than Uc = 3.16) the system beomes Mott insulator. Theregion of interations where the resistivity urves display maxima narrows with in-reasing of disorder. Similar as in the ase of weak disorder, the bandwidth inreasesdue to the disorder. The density of states, obtained using the maximum entropy an-alyti ontinuation from the imaginary axis is shown in Figure 6.2. The renormalizedenergy level of eah site remains in the band.
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6.2 DMFT ON THE FINITE CUBIC LATTICE
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6.2 DMFT ON THE FINITE CUBIC LATTICEthe impurity problem in StatDMFT equations are solved using the CTQMC.Figure 6.3 (6.4) displays the imaginary part of the Green's funtion (self-energy)for the 10 × 10 × 10 ubi lattie ompared with the same quantity for the in�niteubi lattie at low temperature T = 0.02 (Fermi liquid regime). The �nite size
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6.2 DMFT ON THE FINITE CUBIC LATTICEthe self-energy are present as small osillations, around the solution for the in�nitesystem.If we inrease the temperature, the �nite size e�ets derease and beome neg-ligible for the latties of the size 6 × 6 × 6 and larger [16℄. This is due to theeletron-eletron sattering, whih inreases the imaginary part of the self-energyand broadens the peaks in the density of states, Figures 6.5 and 6.6. The tem-
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Figure 6.5: Comparison of the imaginary parts of Green's funtions for lean system
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6.2 DMFT ON THE FINITE CUBIC LATTICEbad metalli regime. The StatDMFT is a unique theoretial method for the studyof disordered strongly orrelated systems in a broad temperature range, inludingthe inoherent regime, whih is the main interest of this work.In onlusion, we have established that the �nite size e�ets are negligible at�nite temperature, in the range of strong inoherent sattering. Conerning the�nite size e�ets when disorder is inluded, they are expeted to be even weaker.Intersite orrelations due to disorder are explored in setion 6.4.2.
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6.3 STATISTICAL DMFT: ELASTIC VS. INELASTIC SCATTERING6.3 Statistial DMFT: elasti vs. inelasti satter-ingThere are two types of sattering in disordered interating eletroni systems: Elasti(impurity) sattering and inelasti (eletron-eletron) sattering [16℄. The inelastisattering exists only at �nite temperatures. Establishing the dominant satteringmehanism is ruial for the understanding of the transport properties. Quite gen-erally, the inoherent sattering is more important near the Mott transition, exeptat the lowest temperatures (in the Fermi liquid regime).The sattering rate in the CPA for W = 2.5 and U = 2.9 is shown in Figure 6.7.This sattering rate takes into the aount both the elasti and the inelasti ompo-nent. The importane of the elasti sattering an be estimated in the following way.In the non-interating ase (U = 0) the sattering rate τ−1
0 = −2ImΣ(0) inreasesquadratially with the disorder strength W [60℄ for small W and roughly linearlyfor large W (Figure 6.8). For W = 2.5 this gives τ−1

0 = 1.47. However, the inter-ation strongly renormalizes (sreens) random potential [60℄, and the renormalizedsite disorder an be de�ned as
ε̃i = εi + Re[Σi(0)] − µ. (6.1)For U = 2.9 the renormalized sattering rate is only τ̃−1

0 = 0.07, whih is muhsmaller than the total sattering in the CPA. Therefore, the role of the elastisattering an be negleted in the remaining part of this hapter.
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6.4 INTER-SITE CORRELATIONS
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6.4 Inter-site orrelationsExat treatment of spatial �utuations within the StatDMFT opens possibility ofdeveloping inter-site orrelations. These orrelations an lead to the lustering ofthe sites with the strong (weak) resistivity, formation of lusters with �nite magne-tization or, at low temperatures to the loalization of the eletron wave funtions(Anderson loalization). Here we explore the inter-site orrelations in the loal re-sistivity.6.4.1 Loal resistivityWithin the statistial DMFT, there is no well established proedure for alulatingthe resistivity. The most rigorous approah implies the usage of the Meir-Wingreenformula in the zero bias regime and the usage of the formalism of non-equilibriumGreen's funtions. However, the proper appliation of this approah requires aessto the non-equilibrium impurity solver, whih development is ompliated task andstory for itself. To the best of our knowledge, the Meir-Wingreen formula for theinterating system at �nite temperature annot be redued to the muh simplerLandauer-like formula (whih uses only the equilibrium quantities), so we need adi�erent approah to alulate the resistivity of the lattie.Here we will use an e�etive approah to alulate the lattie resistivity [16℄. Inorder to do that, we onentrate on the loal resistivity that we alulate from thestandard Kubo formula in the DMFT form, using the Eq. (2.28). Figure 6.9 presentsthe loal resistivity distribution in the lattie for the parameters W = 2.5, U = 3.12,70



6.4 INTER-SITE CORRELATIONS
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Figure 6.9: Loal resistivity of the lattie for one realization of disorder and parame-ters W = 2.5, U = 3.12, T = 0.04 (upper panel) and W = 2.5, U = 2.90, T = 0.007(lower panel).
T = 0.04 (upper panel) and W = 2.5, U = 2.90, T = 0.007 (lower panel). We ansee that there is no distinguished lustering of the sites with strong or weak loalresistivity. This an be determined more rigorously from the orrelation funtion.
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6.4 INTER-SITE CORRELATIONS6.4.2 Correlation funtionStatistial dynamial mean �eld theory, by onstrution, fully inludes the spatial�utuations and allows the inter-site orrelations. In order to study these orrela-tions, we de�ne the loal resistivity orrelation funtion in the following way
χρ(rij) = 〈(ρi − ρav)(ρj − ρav)〉, (6.2)where ρi is the resistivity at the site i, rij is the distane between sites i and j and

ρav is the average loal resistivity of the lattie. The orrelation funtion assumesthe exponential form
χρ(rij) = c exp(−rij/ξ), (6.3)where ξ plays a role of the orrelation length and the inequality ξ . 1 holds inwide range of parameters that we explored. This result proves that the inter-siteorrelations are negligible [16℄.
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6.5 RESISTIVITY OF THE LATTICE6.5 Resistivity of the lattieThere is no exat formula for alulating the lattie resistivity within the StatistialDMFT. Here we use an e�etive approah to this problem. We onsider the lattieas a resistor network onstruted from loal resistivities that we have de�ned in theprevios Setion. On every link between neighboring sites i and j we plae a resistorwith the value of average resistane of the linked sites
rij =

ρi + ρj

2
. (6.4)Here the prefator whih inludes the length of the link and its ross setion is takento be equal to 1. This onstrution is already used in a slightly di�erent onetxt[? ℄. We de�ne the resistivity of the lattie, up to the prefator, as the equivalentresistane between the two groups of sites, where the inoming and outgoing leads areattahed. The prefator is determined to ensure the proper limit of the resistivityin the ase where all the resistors have the same resistane. It orresponds tothe equivalent resistane of the lattie in the ase when all the resistors have theresistane equal to 1.Following the Kirhho� rules, the equivalent resistane an be alulated fromthe matrix de�ned by

Aij =






∑
k 6=i Cik, i = j

−Cij , i 6= j
, (6.5)where Cij is the ondutane matrix Cij = 1/rij. The equivalent resistane betweentwo sites i and j is equal to the ratio between two minors of the determinant detA,

Rij =
detA(ij)

detA(j)
, (6.6)where we obtain A(i) by removing i-th row and olumn, and A(ij) by removing i-th and j-th rows and olumns. In order to alulate the resistivity of the lattie,we take for the ontats the short-iruited sites, where the inoming and outgoingleads are attahed. This orresponds to the way that resistivity is measured in mostof experiments.
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6.5 RESISTIVITY OF THE LATTICE6.5.1 Weak disorderThe CPA approximation gives a good understanding of the proesses in the regimeof weak disorder, when we expet that the CPA and the StatDMFT oinide. Theagreement an be understood in the following way: For weak disorder, the spatial�utuations in the loal ondution bath ∆i(ω) are rather small, and it is approxi-mately equal to ∆CPA(ω) in the CPA approximation. Therefore, the main disordere�et originates from the e�etive loal doping whih is (in the ase of weak disorder)well aptured by the CPA. Roughly speaking, the loal doping auses a shift of theHubbard bands in the loal density of states (LDOS), while the quasipartile peakremains at the Fermi level. Another onsequene of doping is the derease of theinelasti sattering rate due to hanges in the loal oupation number (eletron-eletron sattering is the strongest at half-�lling and goes to zero for unoupiedand doubly oupied sites).Conerning weakly doped sites, we should keep in mind that the system is inthe viinity of the Mott transition, thus the inelasti sattering rate is signi�antlyenhaned on these sites and the quasipartile peak (if exists) is very narrow. Thisauses larger loal resistivity than for strongly doped (weakly orrelated) sites. Onehas to keep in mind that we onentrate on the temperature region T & T
F L
, wheretransport is dominated by the eletron-eletron sattering.6.5.2 Strong disorderInrease of the disorder leads to the qualitative di�erene between the CPA andstatistial DMFT. The reason for suh behavior is in the spatial �utuations in

∆i(ω) whih beome muh more pronouned in this ase. The �utuations in theloal bath are larger due to the wider on-site energy distribution. This leads tothe deviation of the loal resistivity (obtained within StatDMFT) from the CPAurves, Figure 6.11. Very lose to the Mott transition, Figure 6.11 (lower panel),these �utuations an even swith some site from being metalli to insulating, or inother words, to open a gap in the loal density of states at the Fermi level. Thisin�uenes the abrupt hanges in the loal resistivity.The temperature dependene of the resistivity of the lattie alulated using theresistor network method is shown in Figure 6.12. We have hosen two maximallydistant plains of 36 sites eah as the spots where we attah the leads [16℄. Beause74



6.5 RESISTIVITY OF THE LATTICE

 0

 5

 10

 15

 20

 25

 30

 35

 40

−1.5 −1 −0.5  0  0.5  1  1.5

ρi

εi

W=2.500, U=2.900

T=0.200
T=0.100
T=0.030
T=0.007

 0

 50

 100

 150

 200

-1.5 -1 -0.5  0  0.5  1  1.5

ρi

εi

W=2.500, U=3.120, T=0.007

CPA
SDMFT

Figure 6.11: Comparison of CPA and StatDMFT loal resistivity at several temper-atures for strong disorder (W = 2.5) and interation U = 0.918 Uc (upper panel)and the same omparison at low temperature T = 0.007 for interation very loseto ritial U = 0.987 Uc (lower panel).of the periodi boundary onditions that distane is three lattie spaing. We haveheked that the result is not sensitive to the partiular positioning of the leads. Theresistivity maxima are few times lower than in the CPA (for the same parameters)and arises at higher temperatures. Also the maxima are wider and the metalli phase75



6.5 RESISTIVITY OF THE LATTICEpersists for stronger interations as ompared to the CPA. It remains to be preiselydetermined what is the ritial interation Uc for the metal-insulator transition. Alsoit appears that the lattie resistivity saturates to a larger value at T = 0 very nearthe Mott transition than in the CPA ase.
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Figure 6.12: Temperature dependene of the resistivity for W = 2.5, for severalinteration strengths.
6.5.3 Strongly and weakly orrelated sitesIt is interesting to explore the loal resistivity ρi and the loal oupation number nias a funtion of the on-site energy εi. Figure 6.13 displays ρi vs. εi and ni vs. εi for
U = 2.90 (upper panel) and U = 3.15 (lower panel). The urve n(εi) is a smoothedspline through atual data (whih do not �utuate muh). This plot suggests thatwe an distinguish two groups of sites: Strongly orrelated (s), lose to half-�lling,and weakly orrelated (w). The loal quasipartile weight

Zi =
1

1 − ∂
∂ω

ImΣi(iω)

∣∣∣∣∣
ω→0

(6.7)is muh smaller at the weakly orrelated sites, Figure 6.14. 76



6.5 RESISTIVITY OF THE LATTICEWe also notie that the range of the on-site energies, where the bath spatial �u-tuations are dominant, is expanding with inrease of temperature until it beomesomparable to the Kondo temperature [16℄ and this is the most learly seen verylose to the transition (Figure 6.13, lower panel). The loal resistivity alulatedwithin StatDMFT deviates from the CPA for the largest loal doping at Kondo tem-perature. This is the same temperature where the resistivity urves (Figure 6.12)reah their maximuma. Further inrease of the temperature opens pseudo gap inLDOS on every site and smears the spatial �utuations in the bath. The on-siteenergy region of dominant spatial �utuations is then narrowing and �nally theStatDMFT data approahes to the CPA.Figure 6.16 illustrates the temperature dependene of the loal resistivity forthese two groups of sites. We have geometrially averaged the resistivity of s andw sites, and ompared with the geometrial average of all sites and with the lattieresistivity alulated using the resistor network approah. Striking feature is that theresistivity of weakly orrelated sites is almost temperature independent, exept atthe lowest temperatures, where the disorder sreening due to the interation is strong[60℄, while the strongly orrelated sites display very strong temperature dependene.The typial average of the loal resistivity inluding all sites qualitatively followsthe alulated lattie resistivity.
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6.5 RESISTIVITY OF THE LATTICE
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6.5 RESISTIVITY OF THE LATTICE
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6.5 RESISTIVITY OF THE LATTICE
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6.6 SUMMARY AND OPEN QUESTIONS6.6 Summary and open questionsWe have suessfully applied for the �rst time the Statistial DMFT method on the�nite size ubi lattie. We used the real axis IPT impurity solver to determine theimportane of the �nite size e�ets, by onentrating on the lean lattie of the sizeup to 10× 10× 10. We determined that the �nite size e�ets are negligible alreadyon the lattie 6× 6× 6 (exept at the lowest temperatures, deep in the Fermi liquidregime).Then we onentrated on a single realization of disorder on the lattie 6× 6× 6using the CTQMC as the impurity solver, and the analytial ontinuation by themaximum entropy method in order to obtain loal quantities on the real frequenyaxis. We on�rmed that the disorder is strongly sreened on the metalli side of theMott MIT and that the inelasti sattering is dominant at temperatures T > TFL.We de�ned a loal resistivity and proposed a resistor network method for alulatingthe d resistivity. This approah is justi�ed by the observation that the inter-siteorrelations are very weak and that the inoherent sattering is dominant. Weidenti�ed two types of sites: strongly orrelated with the loal oupation lose to1, and weakly orrelated away from loal half-�lling. Non-monotoni temperaturedependene in the resistivity originates from strong temperature dependene of theloal resistivity on strongly orrelated sites.It remains to explore the ritial region very near the MIT transition more losely.There are indiations that some sites Mott loalize in this regime, while the systemis still overall metalli. Also, it is important to investigate the solution of themodel in the presene of even stronger disorder, where one might expet a two-�uidbehavior where a fration of sites beomes Anderson loalized. The solution of themodel in two dimensions, where the spatial �utuations are stronger, may revealnew interesting features as well.
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7. ConlusionIn this thesis we have examined the in�uene of disorder on the strongly orrelatedsystems in a wide range of parameters, in the viinity of the Mott transition. Thedisorder is modeled by the random potential (uniform distribution of the on-siteenergies) introdued into half-�lled Hubbard model. The solutions are obtainedwithin dynamial mean �eld theory and its extensions.In the weakly disordered ase we used the oherent potential approximation,whih assumes the averaging of the loal Green's funtions over the on-site energydistribution. Our fous was to understand the onsequenes of the presene of in-homogeneities onto the optial ondutivity and the d resistivity. The main e�etsaptured within the CPA are the inreasing of metalliity of the system with dis-order while the interation is kept onstant. The disorder inreases the bandwidth,whih leads to the inrease of the ritial interation Uc, where the Mott transi-tion ours. For �xed interation U this e�etively weakens the eletron-eletronorrelations and auses the derease of the sattering rate, and d resistivity. Thesame e�et of restoring metalliity with disorder was observed in the experimentson organi harge-transfer salts. Disorder in this experiments was tuned by the X-ray irradiation. We emphasize that the randomness in our model does not hangethe global doping, as the system remains on average half-�lled. However, loallyhalf-�lling is not preserved. This provides another view to the explanation of theobservations seen in these experiments. We also �nd that the maximal possiblevalue of the resistivity greatly exeeds (more than an order of magnitude) the quasi-lassial Mott-Io�e-Regel limit for maximal metalli resistivity even in the preseneof moderate disorder. As in the lean ase, the violation of the MIR limit is drivenby a large sattering rate due to the eletron-eletron sattering. Interestingly, theDrude-like peak in the optial ondutivity persists even at temperatures when theresistivity is well beyond the MIR limit.The same trends in the resistivity urves are present in a totally di�erent group82



of materials - diluted two dimensional eletron gases in Si MOSFETs and GaAsheterostrutures. The Coulomb interation in these materials an easily be tunedby hanging onentration of arriers. There were a number of theoretial proposalsthat suggested the deisive in�uene of disorder to the transport properties of thesematerials. However, all these theoretial attempts failed to desribe observed e�etsin a wide range of onentrations, while their appliation in the high temperatureregime is questionable. We have proposed a phenomenologial saling of the metalliurves based on the insight obtained from the study of various strongly orrelatedsystems. By testing the saling ansatz on several lasses of strongly orrelated ma-terials and the half-�lled Hubbard model (in disordered and lean ase), we haveestablished that the emergene of resistivity maxima upon thermal destrution ofheavy Fermi liquids should be regarded as a generi phenomenon in strongly or-related systems. From the fat that the same saling works very well for di�erenttwo-dimensional eletron gases in a wide range of onentrations (pratially for allmetalli urves near the transition), we onlude that the strong eletron orrelationsin the inoherent regime are the primary driving fore behind the metal-insulatortransition and that additional disorder e�ets are less signi�ant. Moreover, wehave doumented that pratially all main signatures of the strongly orrelated sys-tems are present in these experiments, and that the ritial behavior of the rossover(oherene) sale T ∗ in both two dimensional diluted eletron gases and strongly or-related systems (experimental and theoretial) is basially the same. Despite thathave we not inluded all mirosopi aspets of the 2DEG, our analysis presentsompelling evidenes that the strong inelasti eletron-eletron sattering and notdisorder is the driving fore behind the unusual transport properties, advoating aWigner-Mott senario for the metal-insulator transition in these systems.In order to investigate the systems in strong disorder regime, the spatial �u-tuations must be treated properly. For this purpose, we employ the statistial dy-namial mean �eld theory to solve the disordered half-�lled Hubbard model for the�rst time at �nite temperatures. This method treats the spatial �utuations on the�nite dimensional lattie while keeping only the loal part of orrelations. The CPAand StatDMFT approahes approximately oinide in the regime of weak disorder.The elasti (impurity) sattering is strongly sreened near the Mott transition andthe inelasti (eletron-eletron) sattering is dominant in the regime of our interest(T & TFL). We have also doumented that the �nite size e�ets, are negligible inthis ase. The inter-site orrelations in the system are weak due to the relatively83



large oordination number (z = 6) in three dimensional ubi lattie. Spatial �u-tuations in the loal bath greatly in�uene eletron properties in the very viinityof the Mott transition in the strong disorder regime. The loal resistivity analysisshowed that two groups of sites emerge. One group onsists of strongly orrelatedsites whih are lose to half-�lling and with the strong temperature dependene ofthe loal resistivity, and the other group of weakly orrelated sites whih are shiftedfrom half-�lling and display weak temperature dependene of the resistivity. Finally,sine there is no established exat way of alulating the lattie resistivity withinthe StatDMFT, we proposed an e�etive approah. We onstruted the resistornetwork from the loal resistivities and alulated the equivalent resistane betweenthe sites where the leads are attahed. The maxima in the resistivity alulatedin this way are few times lower than in the CPA and the peak in the resistivityvs. temperature urve is not as pronouned as in the lean ase, or in the CPAapproximation. There are signatures of two �uid behavior near the Mott transition,where a fration of the sites are loalized, while the system is overall still metalli.This remains to be more arefully explored in the future work and partiularly forthe ase of even stronger disorder. Also, an important diretion for future work is toexplore the two dimensional systems where the spatial �utuations an have moredramati onsequenes.
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