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1

Introduction

The ongoing energy crisis, which is only to exasperate by the passage of time, calls for the
rapid development of renewable energy sources. At the same time, the alarming emission
of greenhouse gases by the conventional sources, motivates the pursuit for greener options.
The abundance of solar energy paves a promising path for dealing with these problems.

Among the existing solar technologies, solar cells based on quantum dots are of specific
interest [1]. The demonstrated capability of quantum dots to generate multiple electron-
hole pairs (excitons) out of a single energetic photon may increase the efficiency per cell,
while the quantum dots with intermediate band allow for the utilization of photons with
energies below the band gap. The study of these solar cells is tightly bound with the in-
vestigation of the electronic transport in quantum dots. Therein lies the motivation for the
research of this thesis.

1.1 Quantum Dots

Quantum dots are nanostructures whose carriers are confined in all three spatial dimen-
sions. Their properties are in between those of the bulk and the single molecules, and are
dependent on the method of their assembly [1].

Electrostatic quantum dots are fabricated by the restriction of the two dimensional elec-
tron gas in a semiconductor heterostructure laterally by electrostatic gates, or vertically by
etching techniques. The properties of this type of quantum dots, can be controlled by the
change of the applied potential at gates, the choice of the geometry of gates or by external
magnetic field. The typical size of these dots is of the order of 100 nm. In general, they are
not considered practical for mass production.

Self-assembled quantum dots are obtained through the growth of layers on top of each
other in heteroepitaxial systems with different lattice constants. This growth mode is called
Stranski-Krastanov mode, while the most common experimental techniques of the epitaxial
nanostructure growth are Molecular Beam Epitaxy and Metalorganic Chemical Vapor De-
position. Self-assembled quantum dots typically have lateral dimensions of the order of 15
– 30 nm and height of the order 3 – 7 nm. Their high price limits them from the industrial
applications.

1



2 1. INTRODUCTION

Colloidal quantum dots or nanocrystals are synthesized as single crystals of the size of a
few nanometers, using chemical methods. Their size and shape can be controlled by the
duration, temperature and ligand molecules used in the synthesis. Colloidal quantum dots
are typically of spherical shape with the diameter sometimes as low as 2 – 4 nm. These
quantum dots represent a good candidate for solar cell applications, due to their low price
as well as favorable electron transport properties in the case when they are interconnected
by molecules.

This thesis considers CdSe quantum dots. The crystal structure of CdSe may take two
forms – wurtzite and zinc blende [2], shown in Figure 1.1. Zinc blende is a two-component
analog to the diamond structure and is represented as Face Centered Cubic with bases 0
and 1

4
(x̂+ ŷ+ ẑ). Wurtzite is a two-component analog of hexagonal diamond structure and

is represented by hexagonal lattice with bases 0 and 1
3
â + 1

3
b̂+ 1

2
ĉ. In the case of CdSe the

parameters of these structures are a = 0.608 nm for zinc blende and a = 0.4135 nm and
c = 0.6749 nm for wurtzite.

Figure 1.1: Two crystal structures of CdSe: wurtzite (left) and zincblende (right) [3].

Some of quantum dot properties of fundamental interest are the controllable charging with
an arbitrary number of electrons and the possibility to be used as a qubit. Aside from
the previously mentioned solar cells, the applications of quantum dots span over biological
labels, light emitting diodes, lasers, optical amplifiers, single photon sources and photode-
tectors [1].

1.2 Purpose of the Thesis

This thesis investigates electron-phonon interaction in colloidal CdSe quantum dots. As
it will be explained later, electron-phonon interaction takes the lead role in the electron
transport between quantum dots, which is one of the most important aspects of quantum
dot solar cells. The choice of the material is irrelevant from the principal point of view, since
the conclusions can be generalized onto other materials. CdSe represents a good option to
work with because its properties have been investigated thoroughly and there is enough
experimental data available to check the validity of the derived results.



2

Theory

A typical quantum dot examined in this thesis contains several thousand valence electrons.
To gain any hope of calculating electron energy levels and wave functions one has to switch
to a single-particle picture of an electron in the effective potential originating from its
interactions with other electrons. In order to do this, we employ the Density Functional
Theory and a method derived from it, the Charge Patching method, which speeds up the
process by avoiding the self-consistent calculations. Using the energies and wave functions
calculated this way, we proceed to electron-phonon interaction calculations. In the end we
apply Marcus Theory to calculate transition rate1 between two quantum dots. The following
sections describe all the steps in detail.

2.1 Density Functional Theory

Density Functional Theory (DFT) [4, 5], developed in 1964 and 1965 by Pierre Hohenberg2,
Walter Kohn3 and Lu Jeu Sham4 makes it possible to map the interacting many-electron
system onto a system of noninteracting electrons moving in an effective potential due to all
the other electrons. This is given by Kohn-Sham equations that read [5, 6]

(−1

2
∇2 + Vion + VH + VXC)ψi(r) = ǫiψi(r) (2.1)

ψi(r) and ǫi are the wave functions and energies of so-called Kohn-Sham orbitals and Vion(r)
is the potential of all nuclei in the system. Hartree potential VH(r) is given as5

VH(r) =

∫

dr′
ρ(r′)

|r − r′| , ρ(r) =
∑

|ψi(r)|2 (2.2)

where ρ represents the electronic charge density of the system, and its summation goes
over all occupied Kohn-Sham orbitals. The exchange correlation potential VXC in (2.1)
accounts for all other effects of electron-electron interactions beyond the simple Coulomb
repulsion, but since its form is unknown this potential has to be approximated. The most

1Transition rate represents probability for transition per unit time.
2Pierre Hohenberg (born 1934), French-American theoretical physicist.
3Walter Kohn (born 1923), Austrian-born American theoretical physicist, Nobel Prize in Chemistry in

1998.
4Lu Jeu Sham, Chinese-American theoretical physicist.
5The system of atomic units where the reduced Planck’s constant ~, the electron mass m0 and the

electron charge e are all equal to 1 is used.

3



4 2. THEORY

common approximation is Local Density Approximation (LDA) [5] which assumes the de-
pendence on local electronic charge only. If the electron density at a point r is n(r), the
exchange-correlation energy per electron ǫXC(r) is calculated as in the case of the free elec-
tron gas of the same density. The value of the LDA exchange-correlation potential is given
as VXC(r) = δEXC [n(r)]

δn(r)
, where EXC [n(r)] =

∫

ǫfreeXC (r)n(r)d3r.

Kohn-Sham and charge density equations have to be solved self-consistently, so that the
occupied electronic states generate charge density which produces the electronic potential
that is used to construct the equations. This makes DFT calculations computationally de-
manding. Another downside of this approach is that one has to calculate all the orbitals ψi
in each iteration, which is redundant for most applications where only a few states around
the gap are needed. An alternative approach that avoids the full self-consistent calculations
without loss in accuracy is presented in the next section.

2.2 Charge Patching Method

Trying to avoid the lengthy self-consistent calculations in charge density calculations Lin-
Wang Wang6 developed the Charge Patching method (CPM) in 2002 [7]. The main as-
sumption of this method is that the charge density around an atom depends only on its
local atomic surrounding. This is justified if there is no long range external electric field to
cause long-range charge transfer, e.g.when there is a band gap in the material. The idea of
this method is to calculate the charge density of a small prototype system and decompose it
into contributions from individual atoms called charge density motifs. While approaching a
large system, these motifs can be patched together to give the total charge density. Charge
density motifs are calculated as

mIα(r − Rα) = ρprototype(r)
ωα(|r − Rα|)

∑

Rα′
ωα′(|r −Rα′ |) (2.3)

where Rα is the position of atom type α, mIα(r−Rα) is the charge density motif of this atom
type, while Iα stands for its atomic environment; ωα(r) is an exponentially decaying function

that defines the partition function ωα(|r−Rα|)
P

R
α′
ωα′ (|r−Rα′ |)

which divides space into overlapping

regions of each atom, thus making mIα(r − Rα) a localized function that can be stored in
a fixed size numerical array. Upon obtaining the motifs one can calculate the total charge
density of the large nanosystem by summing over each atom’s assigned motifs

ρpatch(r) =
∑

Rα

mIα(r − Rα). (2.4)

After constructing the whole charge density one can proceed to calculate Hartree potential
by solving Poisson’s7 equation △V = −ρ

ǫ
and, along with LDA formula for exchange-

correlation potential, obtain the single particle Hamiltonian.

The Charge Patching method was tested for carbon fullerenes, semiconductor alloys, semi-
conductor impurities, organic molecules and polymers and semiconductor quantum dots.

6Lin-Wang Wang, Chinese-American theoretical physicist.
7Siméon Denis Poisson (1781-1840), French mathematician, geometer and physicist.
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The generated patched charge densities are typically within 1% of the self-consistently cal-
culated LDA charge densities, and the corresponding energies are within 30 meV. Typical
numerical uncertainty (due to basis function truncations and different nonlocal pseudopo-
tential treatments) of LDA calculations is about the same order of magnitude. Therefore,
the Charge Patching method can be considered as accurate as the direct ab initio8 calcula-
tions for these systems.

2.3 Passivation

When dealing with the colloidal quantum dots, special care has to be taken about their
surface. The surface of the bare crystal consists of dangling bonds that introduce band gap
states. One of the ways to remove band gap states is so-called passivation which implies
pairing of the dangling bond electrons with other electrons [1]. Since every atom inside the
quantum dot has four neighbors, if it has m valence electrons, it contributes with m/4 elec-
trons per bond, while its neighbors provide 2−m/4 electrons each, forming the eight-electron
configuration in the highest occupied orbital. Same way, each dangling bond provides m/4
electrons and needs to be passivated by 2−m/4 electrons. To keep the system locally neu-
tral there also has to be a positive 2 −m/4 nuclear charge. The simplest passivation agent
is therefore a hydrogenlike atom with 2−m/4 of both electrons and positive nuclear charge
Z. For IV-IV group materials like Si, Z = 1 and one is dealing with the hydrogen atom,
while for II-VI systems, Z has a noninteger value and such atoms are called pseudohydrogen

atoms. These artificial pseudohydrogen atoms do describe the essential features of good
passivation agents and serve as simplified models for the real passivation situations, where
organic molecules with complicated and often unknown structure are involved.

2.4 Transport Mechanisms

To achieve better electron transport, quantum dots are often connected by a molecule as
shown in Figure 2.1. This assures that the wave functions overlap.

Figure 2.1: Two quantum dots connected by a linker molecule.

8Latin term meaning ”from the beginning”.



6 2. THEORY

There are different possible mechanisms for electron transport between quantum dots con-
nected by a molecule [8]:

(a) a narrow bulk band formed by the coupling of nearby quantum dot wave functions
and a bulk crystal like Bloch state electron transport;

(b) the tunneling mechanism where the electron transports from one quantum dot to a
nearby quantum dot purely by electronic coupling without the help of the phonon;

(c) over-the-barrier activation mechanism, where electrons are thermally excited to quan-
tum dot eigenstates with energies higher than the potential barrier at the linker, then they
transport freely to the other side of the barrier;

(d) the phonon assisted hopping, where the electron hops from one dot to a nearby dot
by absorbing one or multiple phonons.

All these scenarios are schematically depicted in Figure 2.2. Theoretically speaking, with-
out material-specific, quantitative calculations, all the above mechanisms are possible. The
quantitative calculations are therefore critical for providing qualitative insights to the mech-
anism of the transport. However, in the case of quantum dots considered here, it will be
shown that phonon assisted hopping gives the main contribution.

Figure 2.2: Possible mechanisms for electron transport between two quantum dots connected by a
molecule. (a) bulk crystal like Bloch state electron transport; (b) direct tunneling mechanism without
the help of phonon; (c) over-the-barrier activation mechanism and (d) phonon assisted hopping.

2.5 Electron-Phonon Interaction

Phonon is a quasiparticle arising from the quantization of the vibrational energy in a crystal.
The eigenenergies and eigenvectors of phonon modes are obtained by the diagonalization of
the dynamical matrix defined as

Krs,pq =
1

√
mrmp

∂2E

∂xrs∂xpq
(2.5)
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where E is the total energy of the system, mr is the mass of the r-th atom and xrs is its s-th
coordinate (s ∈ 1, 2, 3) [1]. Each eigenvalue is a squared angular frequency ωµ of a phonon
mode µ

∑

pq

Krs,pqR
(µ)
pq = ω2

µR
(µ)
rs (2.6)

and the normal coordinate of mode µ is given as

νµ =
∑

rs

R(µ)
rs (xrs − x0

rs)
√
mr (2.7)

where (xrs−x0
rs) represents the s-th coordinate displacement of atom r from its equilibrium

position.

Inside a quantum dot electrons are interacting with phonons making transitions between
electronic states. The Hamiltonian of this interaction is given as

He−ph =
∑

i,j,µ

Mi,j,µa
†
iaj(bµ + b†µ) (2.8)

where ai/j , a
†
i/j , bµ, b

†
µ are the annihilation and creation operators for electrons and phonons

respectively, Mi,f,µ = 〈ψi|∂H0

∂νµ
|ψf〉 is the electron-phonon coupling matrix element be-

tween electronic states i and f , with H0 being the single particle Hamiltonian H0 =
−1

2
∇2 + Vion + VH + VXC .

To calculate the change ∂H0

∂νµ
one can displace each atomic coordinate by a small ∆xrs

in the direction s to obtain ∂H0

∂xrs
, and then use (2.7) to perform a transformation. The

Charge Patching method is particularly suitable to efficiently compute the displacements
∂H0

∂xµ
since the only difference in the charge density between the perturbed and equilibrium

configurations comes from the charge density motifs of the displaced atom and its neighbors.

2.6 Marcus Theory

Studying electron transport in chemical reactions, Rudolph Marcus9 developed in 1956 a
theory [9] about electron transfer rate between two chemical species shown in Figure 2.3.
The initial and final states are vibrational levels of molecules (or in our case quantum dots)
and the transfer rate is given by the Fermi10 Golden Rule as

kCT =
2π

~2
|V |2

∑

ν

∑

ν′

Piν |〈Θfν′|Θiν〉|2δ(ωfν′,iν) (2.9)

where V is the electronic coupling between initial and final states, Θi/f are the nuclear (ionic)
vibration wave functions of the initial/final states, consisting of product of independent
harmonic oscillators Θi/f,ν =

∏

j χi/f,νj
(Qj), Piν is the distribution function for the collection

of quanta νj of the initial state and ωfν′,iν is the energy difference between final state with

9Rudolph Marcus (born 1923), Canadian chemist, Nobel Prize in Chemistry in 1992.
10Enrico Fermi (1901-1954), Italian-American physicist, Nobel Prize in Physics in 1938.
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vibrational quantum numer ν ′ and initial state with vibrational quantum number ν. After
some derivation [10], equation (2.9) can be expressed as

kCT =
1

~2
|V |2

∫ ∞

−∞

dt exp{iωfit−
∑

j

Sj [(2n̄j + 1) − n̄je
−iωjt − (n̄j + 1)eiωjt]} (2.10)

where ωfi = ∆G
~

is the difference between the equilibrium energies of initial and final state
divided by ~, n̄j = 1

e~ωj/kbT −1
denotes the population of the jth normal mode and ωj is

its frequency, Sj =
λj

~ωj
is the Huang-Rhys factor measuring the electron-phonon coupling

strength and can be also expressed through electron-phonon coupling matrix element as

Sj =
|〈ψi|

∂H
∂νj

|ψi〉|2

ω2
j

, while λj is the contribution of the jth mode to the reorganization energy.

In the case of the strong coupling
∑

j Sj ≫ 1 and high-temperature limits (2.10) gets the
form of Marcus formula

kCT =
|V |2

~

√

π

λkBT
exp(−(λ+ ∆G)2

4λkBT
) (2.11)

with λ =
∑

j λj . In this formula the nuclear (ionic) vibrational effect is accounted for
classically.

Figure 2.3: Energy scheme in Marcus theory transfer calculations [3].
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Simulation

Numerical modeling of quantum dot systems investigated in this thesis was based on the
theory presented in the previous chapter. The electronic structure was calculated by the
Charge Patching method and used as input to determine the electron-phonon coupling.

All computational codes used were written in FORTRAN programming language and were
executed on National Energy Research Scientific Computing Center’s Franklin Cray XT4
parallel processing system with 38.128 Opteron computer cores and a peak performance of
352 TFlops/sec [11]. The calculations used around 200.000 processor hours.

3.1 Electronic Structure

To calculate the electronic structure we start with the generation of quantum dot crystal
structure with the geometry described at Figure 1.1. The complexity of this algorithm is
linear in the number of atoms N . Using the Charge Patching method we patch motifs
illustrated in Figure 3.1 onto corresponding parts of the crystal structure to construct the
charge density. This process is also linear in N .

Figure 3.1: An example of a charge density motif at the edge of a quantum dot. Purple dots are Cd
and Se atoms, white dot is a pseudohydrogen atom and yellow surface represents sample charge density
isosurface.

Using Fourier transform to solve Poisson’s equation with the calculated charge density,
we obtain the potential created by electronic charge distribution in O(NlogN) complexity.
Having determined the electronic potential, we solve Kohn-Sham equations by the Folded
Spectrum Method [12] which, instead of Hamiltonian H , uses (H − Eref)

2, where Eref is
reference energy, and solves the equations by the Conjugate Gradient Method [13]. These

9



10 3. SIMULATION

two operators have same eigenstates and this change allows for the calculation of an ar-
bitrary number of states around Eref instead of the calculation of all states from ground
energy on, which is convenient because we are interested only in the energy states around
the band gap. The complexity of this step is O(LNlogN), where L is the number of levels
desired. Notice that the complexity of this whole calculation is at most O(N2logN), and
for most applications just O(NlogN), while the standard DFT approach scales as O(N3).
This introduces a significant speed up to calculations of large quantum dots.

Analyzing the degeneracies and the shape of the states in the conduction band, one can
notice the energy levels are formed similarly as orbitals in an atom. The examples of cal-
culated conduction band states are given in Figure 3.2. The bandgap dependence on the
quantum dot diameter is given in Figure 3.3 and shows that the energy needed to excite an
electron over the bandgap increases as the size of the quantum dot decreases. We fitted this
dependence to a power law and obtained the results in agreement with experimental data
for CdSe [14].

Figure 3.2: First four conduction band states in a zinc blende 2047-atom CdSe quantum dot calculated
by the Charge Patching method. Purple dots are Cd and Se atoms, white dots are pseudohydrogen atoms.
(a) represents s-state with energy 0.918 eV, while the other states are degenerate p-states with energies (b)
1.251 eV (c) 1.253 eV (d) 1.258 eV. The value of the fifth conduction band energy is 1.567 eV.

 0.25

 0.5

 1

 2

 2  3  4  5  6

E
B

G
 [

eV
]

d [nm]

Figure 3.3: The bangap size dependence on the diameter of colloidal wurtzite CdSe quantum dot and its
fit to EBG = cd−α, c = 3.9(2), α = 1.24(3).
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To check the correctness of the method used we compared DFT and Charge Patching cal-
culations on a 465-atom zinc blende quantum dot and noticed the spectra are displaced by
0.14 eV, but have the same value of the band gap 2.03 eV and the same splitting between the
first two conduction band levels 0.56 eV. Therefore, we conclude that the Charge Patching
method gives the correct spectrum for the purposes of this research.

3.2 Electron-Phonon Coupling

The goal of our simulation was to calculate matrix elements 〈ψCBM | ∂H0

∂xks
|ψCBM 〉 in quantum

dots of various sizes. These results can be used in research studying electron-phonon inter-
action in quantum dots.

We start with the generation of crystal structures in which a single atom (r-th atom) is
displaced in x, y or z-direction (s-th direction) for a displacement which is small compared
to the inter-ionic distance, in our case ∆xrs = 0.01 Å. This is done for each Cd and Se
atom and each direction with the complexity O(N2). Then, as described in the previous
section, we patch charge densities and solve Poisson’s equation to get the potential V el

rs . Sub-
tracting the non-displaced potential from V el

rs we obtain their difference ∆V el
rs in O(N2) time.

To check the correctness of the obtained potential difference we compared it to the one
calculated by DFT and found a certain mismatch. This is due to the fact that the Charge
Patching method (in the current version) accounts only for changes in the charge density
around the displaced atom and its neighbors. Therefore it does not properly take into ac-
count the screening of the field of the charge density induced by the atomic displacement.
For proper consideration of such screening, one would also have to take care of the changes
in charge density of atoms further away from the displaced atom. To correct this mismatch,
we constructed mask function to scale Charge Patching electron potential difference in the
neighborhood of the displacement to the value of DFT electron potential difference. The
mask function has an exponential form

w(r) = b + e
−

(r−ratom)2

r2

b
a2 (3.1)

where ratom is the coordinate of the atom being displaced (before the displacement), rb =
0.529 Å is Bohr radius, while a and b are constant parameters which take values a = 4.0,
b = 0.2 for Cd atom and a = 2.5, b = 0.0 for Se atom, Figure 3.4. Multiplying the change
of electron potential difference obtained by the Charge Patching method we get a good
estimate of the exact value of electron potential difference. This fix was calculated using
results for 465-atom zinc blende CdSe quantum dot, and can be used for other dot sizes, as
well as for the wurtzite structure. It executes in O(N2) time.

Having corrected the electron potential difference and including ionic potential difference we
proceed to calculate 〈ψi|∆Vrs|ψj〉 for first 20 non-displaced conduction band states ψi/j and
displacements of each atom (r-th atom) in each direction (s-th direction). The complexity

of this step is O(N2). Dividing calculated values by ∆xrs we obtain C(ij)
rs = 〈ψi| ∂V∂xrs

|ψj〉.
To justify the correctness of the mask function we compare these values to those calculated
by DFT method for several atoms r. We find good agreement within 30% error which is
illustrated in Figure 3.5.
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Figure 3.4: The shape of the mask function w(r) = e
−(r−ratom)2/(2.5rb)2 for scaling the potential difference

around an Se atom, shown in x − y plane for z = 0, rb = 0.529 Å.
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Figure 3.5: Comparison between real part of C(ij)
rs values calculated by the Charge Patching method with

mask function and DFT approach for a sample atom r in a 465-atom zinc blende CdSe quantum dot. The
y = x line is given as a reference.

Finally, using the non-displaced conduction band minimum (CBM) states we calculate (also
in O(N3) time) Crs = 〈ψCBM | ∂H0

∂xrs
|ψCBM 〉 = 〈ψCBM | ∂V

∂xrs
|ψCBM〉. Figure 3.6 shows the de-

pendence of Crs values along quantum dot diameter in x-direction for displacement along
the s = x direction for different sizes of the quantum dot.

The dependences shown in Figure 3.6 show the same trend for all dot sizes and change
the sign as they cross the center of the dot. This can be explained through the following
theoretical reasoning. The potential change ∂V

∂xrs
can be reasonably approximated with the

delta function derivative. Then

Crs ∼
∫

|ψCBM |2δ′(x− xatom)dx = − d

dx
|ψCBM |2

∣

∣

∣

∣

x=xatom

. (3.2)
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Figure 3.6: Dependence of Crs values for Cd atoms (left) and Se atoms (right) along diameter (in relative
coordinates) in x-direction for the displacements in s = x direction for wurtzite CdSe quantum dot. Red
dots denote quantum dot of 468 atoms and d = 2.5 nm diameter, green diamonds: 1051 atoms and d = 3.4
nm, blue triangles: 1916 atoms and d = 4.3 nm, magenta squares: 3193 atoms and d = 5.1 nm.

CBM state is an s-state which is totally symmetric and, watching along x-direction, |ψCBM |2
is a Bell curve. Its derivative is positive in the first half of the diameter, zero in the center
of the quantum dot, and negative in the second half of the diameter, which explains why Crs
changes the sign in the center of the dot. The absolute value of Crs gets bigger as the dot
gets smaller. This is due to the increase of |ψCBM |2 when the dot diameter decreases, as a
consequence of normalization of ψCBM . Finally, the inverse dependence of Cd compared to
Se comes from the the fact that the charge densities around their ions have opposite signs,
since their oxidation states are Cd+2 and Se−2.

In the next chapter we will show how the obtained results can be used for investigation
of electron transport between quantum dots.
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Applications

The results presented in the previous chapter were applied in the research of electron trans-
port in quantum dots connected by a molecule, done in Lawrence Berkeley National Labora-
tory, Berkeley, California [15], in the group of Dr. Lin-Wang Wang. Relaxation energy was
calculated using the obtained values of Crs, electronic coupling was calculated separately
and these two were combined in Marcus Theory for the calculations of electron transport
[8].

4.1 Molecular Attachment

Experiments have shown that colloidal quantum dots can form periodic crystal structures,
supercrystals, interconnecting themselves with different linker molecules. Such quantum dot
supercrystals have unique mechanical, thermal, electrical and optical properties and the
experiments have studied these aspects. However, there has not been much support from
theoretical calculations to explain their electron transport mechanisms.

One of the synthesized supercrystals which showed strong conductivity is made of CdSe
quantum dots connected by Sn2S6 molecule [16, 17]. It represents a suitable material to
model the transport mechanisms on. In order to study the electron conductivity one can
first study electron transport between two quantum dots connected by a linker molecule and
perform ab initio calculations. A typical quantum dot in experiments is ∼5 nm in diameter
and consists of ∼3.000 atoms. This means the two-dot system has ∼6.000 atoms which
is beyond the limit of current computational power if DFT method is used. However, the
Charge Patching method described in previous chapters can be successfully applied with a
minor loss in accuracy.

The investigation of the molecule-quantum dot attachment starts with the study of the
attachment between the Sn2S6 molecule and a flat CdSe (101̄0) surface. Two types of at-
tachment shown in Figure 4.1 were studied [8]. Type I has two end S atoms connected
to two neighboring Cd atoms, one in plane, one standing out of the plane. Type II has
Sn-S2-Sn rhombus rotated for 90 degrees and its two end S atoms attached to a standout
Cd and another two Cd atoms in plane. The standout Cd atom is used to satisfy the local
electron counting rule. Type II attachment has closer distance between the molecule and
the surface, and is 0.5 eV more stable.

15
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Figure 4.1: Type I and type II attachment of Sn2S6 to flat CdSe (101̄0) surface [8].

4.2 Electronic Coupling

To calculate the charge density, the system is divided into three parts: two quantum dots
and a molecule attached to small parts of quantum dots. The latter consists of ∼500 atoms
passivated with pseudohydrogens and can be calculated self-consistently using DFT. For two
quantum dots the Charge Patching method was used, as described in Section 3.1. Gathering
the charge densities from all three parts and solving Poisson’s equation one gets electron
potential needed to solve the DFT single particle equation (2.1). Once conduction band
energy levels are determined [8], one can notice that the first two states are very close and
represent electron localized in one or the other quantum dot Figure 4.2a.

Figure 4.2: (a) Isosurfaces of the charge densities of CBM (green, left) and CBM+1 (purple, right) electron
states. (b) The eigenenergies for CBM and CBM+1 as functions of the added small external potential at
one quantum dot, in the case of 1916-atom CdSe wurtzite quantum dots, type I attachment [8].
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The main step of charge transport is electron transfer from one quantum dot state to another
quantum dot state. The electronic coupling of these two states can be calculated by their
anticrossing which is done by artificially adding a small external potential at one quantum
dot and driving the energy of its eigenstate over the energy of the other eigenstate. This
is shown in Figure 4.2b and the anticrossing is twice the value of electron coupling Vc. As
the quantum dot size gets smaller the value of Vc gets larger. This dependence is given in
Figure 4.3 for both types of attachments [8].
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Figure 4.3: Electron coupling dependence on inverse number of atoms and the corresponding linear fit,
for colloidal CdSe quantum dots connected by Sn2S6 molecule [8]. Values for type I attachment are shown
in red squares, while type II attachment is shown in blue circles.

4.3 Reorganization Energy

Since the linker molecule has small phonon density of states, and the wave function from
Figure 4.2a has very small amplitude at the molecule, the phonon modes from the molecule
can be ignored and electron-phonon coupling can be restricted to electron-phonon coupling
within each quantum dot.

The matrix elements Crs obtained in Section 3.2 were used to calculate electron-phonon
coupling matrix Mi,j,µ whose diagonal elements are needed to determine the reorganization
energy λ, as theoretically described in Section 2.6. The dependence of relaxation energy on
inverse number of atoms in quantum dot is given in Figure 4.4.

4.4 Charge Transfer Rate

Using the calculated electron coupling and relaxation energy, the charge transfer rate kCT =
τ−1 can be calculated with Marcus formula (2.11). This approach treats the phonon degree
of freedom classically and does not allow quantum tunneling of the atomic movement. The
inclusion of the quantum mechanical treatment gives the formula (2.10). In both approaches
τ−1 is a function of equilibrium energy difference between the dots ∆G = ǫa − ǫb which is
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Figure 4.4: Relaxation energy dependence on inverse number of atoms in a colloidal CdSe quantum dot
with the corresponding linear fit [8].

zero in case of equal quantum dots.

In order to model a more realistic case one should allow for fluctuation in size of quantum
dots and consequently in the value of ǫa − ǫb. Figure 4.5 compares the values of hopping
rates for Marcus formula and quantum treatment for different sizes of quantum dots [8].
One can see a remarkable agreement of the two approaches around ǫa − ǫb = 0.

Figure 4.5: The electron hopping rate dependence on the eigenenergy difference between the two quantum
dots at room temperature for the cases of (a) 468-atom quantum dot, (b) 1051-atom, (c) 1916-atom and
(d) 3193-atom, type I molecular attachment [8]. Solid curves represent the Marcus theory result, while the
dashed curves represent quantum phonon treatment.
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4.5 Electron Transport Mechanism

From the results of performed calculations one can get insight into the nature of electron
transfer between quantum dots. Out of the transport mechanisms presented in Section 2.4
phonon-assisted hopping emerges as dominant [8]:

(a) Since the reorganization energies 4.4 are much bigger than the electron coupling 4.3,
the electrons prefer to be localized in a single quantum dot to gain the reorganization en-
ergy instead of being in an extended state to gain the electron coupling energy. Therefore,
the mini-band picture (Fig 2.2a) will not hold.

(b) For direct tunneling to work without the involvement of phonons, the other side should
have a continuous density of states to conserve the energy, but this is not the case, since the
other quantum dot has discrete energy levels above CBM. The possibility of resonant tun-
neling should also be neglected. For resonant tunneling to occur, the eigenenergy difference
ǫa − ǫb should be within the coupling constant Vc. Typically there is 5% size fluctuation
between the quantum dots which corresponds to 50 meV change in eigenenergy for exper-
imentally relevant 5.1 nm diameter quantum dot. This is a hundred times bigger than Vc,
therefore no direct tunneling without phonons (Fig 2.2b) is possible.

(c) In direct hopping over the barrier (Fig 2.2c) the electron can jump to a level above
the potential barrier, due to thermal fluctuations. In the case of d = 5.1 nm the barrier is
about Eb = 2.4 eV. The estimated hopping rate is τ−1

0 e−Eb/kBT ∼ 10−39 ps−1. This is much
smaller then the multi-phonon hopping rate described by Marcus theory, and can therefore
be ignored.

(d) The multi-phonon assisted process (Fig 2.2d) described by Marcus theory proves to
be the most likely charge transfer mechanism between the two quantum dots.

4.6 Carrier Mobility

To check the agreement of this approach with the experiment, one can compare the values
of the carrier mobility in a quantum dot supercrystal [18]. The dot size in the chosen ex-
periment [17] is 4.5 nm with 5% size fluctuation and its mobility is µ = 3 · 10−2 cm2/V/s.
The closest of the four dots considered is the one with 4.3 nm diameter. Three cases are
considered: no size fluctuation, 5% size fluctuation, and 5% size fluctuation with a uniform
distribution of |Vc|2 between zero and values given in Figure 4.3. The last uncertainty comes
from the assumption that the quantum dot-molecule attachment is not as good as described
by either type I or type II and that there are some loose attachments. The calculated mo-
bility values are given in Table 4.1.

The 5% size fluctuation decreases the value of mobility by a factor 1.7, and the loose
attachment further reduces it by a factor 5 [8]. The results for type I attachment agree very
well with the experimental result, while type II attachment is an order of magnitude larger.
Therefore, one can conclude that majority of the attachments is type I-like. Also, the model
in which pairs of quantum dots are interconnected by a single Sn2S6 molecule agrees quite
well with the experiment.
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5% size fluctuation uniform connection fluctuation µI [cm2/V/s] µII [cm2/V/s]

No No 8.22 × 10−2 2.16
Yes No 4.80 × 10−2 1.26
Yes Yes 1.02 × 10−2 0.26

Table 4.1: The mobility µ for type I and type II molecule attachment in a quantum dot supercrystal with
d = 4.3 nm. The experimental value for the case of 4.5 nm-quantum dot array is 3 · 10−2 cm2/V/s [8].
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Conclusions

This thesis models electron-phonon interaction in non-organic quantum dots on the example
of colloidal CdSe quantum dots.

Using the Charge Patching method it has been shown how to accurately calculate electronic
structure for large quantum dots (∼3.000 atoms) which are beyond the reach of Density
Functional Theory self-consistent calculations, with the currently available computational
resources.

For the calculations of electron-phonon interaction in quantum dots, an approximation
of mask function has been developed to scale the results of electron potential for crystal
structures with a displaced atom, obtained by the Charge Patching method, to agree with
the exact Density Functional Theory results. This approximation makes it possible to cal-
culate matrix elements Crs = 〈ψCBM | ∂H0

∂xrs
|ψCBM 〉 for large quantum dots, which are needed

in calculations of electron-phonon coupling matrix.

The values of Crs have been calculated for four different quantum dot sizes. The depen-
dence of these values along the quantum dot diameter has been analyzed and its trend has
been theoretically derived.

The applications of the obtained results in the research of CdSe quantum dot supercrystals
connected by Sn2S6 linker molecule by two types of attachment in Dr. Lin-Wang Wang’s
group at Lawrence Berkeley National Laboratory have been presented. The electron trans-
fer rate has been calculated for multi-phonon assisted hopping and this has been proved
to be the dominant mechanism of charge transport in such supercrystals. The mobility for
both types of attachment has been calculated and the results have shown close agreement
with the experimental values.

21
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