

Parallel Implementation of a Monte Carlo Molecular Simulation Program

Milan Žeželj and Vladimir Slavnić Scientific Computing Laboratory Institute of Physics Belgrade Serbia e-mail: milan.zezelj@scl.rs

Monte Carlo molecular method

- Classical approach
- Lennard-Jones potential between two particles
- N particles in the system
- domain of the simulation are box
- periodic boundary conditions
- we want to know energy, pressure, density...

Monte Carlo:

- 1) Random move the particle

2) If the move is downhill in energy the new state is accepted

3) If the move is uphill in energy the new state is accepted with some probability (Metropolis algorithm)

Monte Carlo molecular method is suitable for modeling equilibrium state

2

SCIENTIFIC Computing Laboratory

Algorithm

Improvements of data access patterns

www.scl.rs

Code profiling

45% of running time used by function **energy of i-th particle**

28% of running time used by function **total energy**

Implement **openMP** in these function

5

5 C

Single core vs. eight core openMP

50

Speedup

www.scl.rs

SCL © 2004-2010

Conclusions

openMP gives speedup up to 5 times using 8 cores

- fast optimization doesn't failure the results and gives additionally speedup of 10%

Further work:

MPI + openMP GPU

Thank you!