Stukturna karakterizacija granularnog materijala tokom procesa kompaktifikacije

S. Živković1, Z. M. Jakšić1, Lj. Budinski-Petković2, D. Arsenović1 and S. B. Vrhovac1

1Institute of Physics, P.O. Box 68, Zemun 11080, Belgrade, Serbia 2Faculty of Engineering, Trg D. Obradovića 6, Novi Sad 21000, Serbia

EXPERIMENTAL SET-UP : COMPACTION OF TWO DIMENSIONAL GRANULAR SISTEM

I *y*→*y*'=(1+ ξ)*y* ξ = 0.1% − 5 % II MDS (film)

- More dissipative and rough disks (A)
 ε₀=0.6 and µ=0.4
 ("GRUBE")
- Less dissipative and smooth disks (B) $\epsilon_0=0.9$ and $\mu=0.2$ ("FINE")

<u>Temporal evolution of the packing fraction</u> obtained for the grains of type (A) and for various tapping intensities 0.1% (red), 0.7% (green), 2% (blue), 3% (violet) and 5% (light blue). The dashed curves are the Mittag-Leffler fits. ("GRUBE")

Inset: evolution of the normalized packing fraction for two kinds of the grains (disks (A) - solid line and disks (B) - dashed line), at $\xi = 3$ %.

FIG. 1. Voronoi diagrams of a packings formed in the simulation at different stages of compaction. Diagrams correspond to t = 2, 8, 15, 30, 50, and 70 taps.

Voronoi cells are colored according to their shape factor . Color coding of Voronoi polygons is defined in Tab. I. These results refer to a disk of type (A). The tapping intensity is = 0.7%. ("GRUBE")

- TABLE I. The table summarizes the classification of Voroni polygons into eight groups G₁ – G₈ according to values of shape factor. For densities corresponding to the packings
- obtained in simulation, the distribution of diminishes above ≈ 1.30.

Grou	p Range	Colour
G1	ζ< 1.108	
G ₂	1.108 <ζ < 1.125	magenta
G ₃	1.125 < ζ < 1.130	cyan
G4	1.130 < ζ < 1.135	red
G ₅	1.135 < ζ < 1.140	green
G ₆	1.140 < ζ < 1.160	blue
G7	1.160 < ζ < 1.250	white
G ₈	1.250 < ζ	black

FIG. 1. nastavak...

t=15

t=50

t=30

t=70

- (a) The temporal evolution of the probability distribution $P(\zeta)$ of the shape factor ζ for the more dissipative disks (A) at tapping intensity $\xi = 3\%$.
- (b) The temporal evolution of the probability distribution P(ζ) of the shape factor ζ for the more dissipative disks (A) at tapping intensity $\xi = 0.7\%$.

(a) The temporal evolution of the probability distribution $P(\zeta)$ of the shape factor ζ for the less dissipative disks (B) at tapping intensity $\xi = 3\%$.

(b) The temporal evolution of the probability distribution $P(\zeta)$ of the shape factor ζ for the less dissipative disks (B) at tapping intensity $\xi = 0.7\%$.

FIG. 4. Time evolution of the packing fraction $\rho(t)$ when the tapping intensity is changed at tw = 30 from 3% to 0.5% (dashed line), and from 0.5% to 3% (solid line). The points A1 and A2 correspond to the packings with equal density $\rho(tw) = 0.828$, at tw = t1 = 30 and t2 = 39.

FIG. 5. Distributions $P(\zeta)$ of the shape factor for the packings at points A1 (solid line) and A2(dashed line) in Fig. 4. These distributions correspond to packings having the same density.

PHOTOGRAPH OF THE EXPERIMENTAL SET-UP

FIG. 6. Simulation (lines) and experimental (symbols) results for the probability distribution $P(\zeta)$ of the shape factor. Experimental results correspond to the packings of disks of diameter d = 4 mm and 6 mm at densities ρ = 0.829 and 0.828, respectively. The simulation results correspond to the packings of less dissipative disks (B) at densities ρ = 0.825 (t = 2, ξ = 0.7%) and ρ =0.830 (t = 2, ξ = 3%).

