Nonlinear BEC Dynamics Induced by the Harmonic Modulation of the Atomic s-wave Scattering Length

Ivana Vidanovićc ${ }^{1}$, Antun Balaž ${ }^{1}$, Hamid Al-Jibbouri ${ }^{2}$, and Axel Pelster ${ }^{3,4}$

${ }^{1}$ Scientific Computing Laboratory, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
${ }^{2}$ Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany ${ }^{3}$ Fachbereich Physik, Universität Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany
${ }^{4}$ Universität Potsdam, Campus Golm, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam-Golm, Germany

Motivation: In the recent experiment [1], a harmonic modulation of the atomic s-wave scattering length induces a nonlinear dynamics of a ${ }^{7} \mathrm{Li}$ BEC, and the resulting resonance curve for the excited quadrupole mode is measured. By combining a perturbative calculation with a numerical approach for solving the underlying Gross-Pitaevskii equation merical approach for solving the underying Gross-plaevskii equation, we investigate in detail the frequency shift of a collective BEC mode which is due to nonlinear interaction effects [2]

Time-dependent variational description of BEC

* Time-dependent GP equation can be studied using a Gaussian variational ansatz [3]. The dimensionless condensate width $u(t)$ evolves according to

$$
\ddot{u}(t)+u(t)-\frac{1}{u(t)^{3}}-\frac{P}{u(t)^{4}}=0,
$$

where $P=\sqrt{\frac{2}{\pi}} \frac{N a}{l}, a$ is the s-wave scattering length, $l=\sqrt{\frac{\hbar}{m \omega}}$ is the harmonic length scale, and N is the number of atoms.
\star Using Feshbach resonances, harmonic modulation of the scattering length was achieved [1], yielding the time-dependent interaction $P(t)=p+q \sin \Omega t$ \star Real-time dynamics for $p=0.4, q=0.06$ and different frequencies Ω

Analytical Poincaré-Lindstedt analysis

* Linearization of the variational equation yields for vanishing driving $q=0$ zeroth order collective mode $\omega=\omega_{0}$ of oscillations around the timeindependent solution u_{0}

$$
\omega_{0}=\sqrt{1+\frac{3}{u_{0}^{4}}+\frac{4 p}{u_{0}^{5}}}, \quad u_{0}-\frac{p}{u_{0}^{4}}-\frac{1}{u_{0}^{3}}=0 .
$$

\star To calculate the collective mode to higher orders, we rescale time as $s=\omega t$:

$$
\omega^{2} \ddot{u}(s)+u(s)-\frac{1}{u(s)^{3}}-\frac{p}{u(s)^{4}}-\frac{q}{u(s)^{4}} \sin \frac{\Omega s}{\omega}=0 .
$$

\star Far from resonances, we assume the following perturbative expansions in q : $u(s)=u_{0}+q u_{1}(s)+q^{2} u_{2}(s)+q^{3} u_{3}(s)+$.
$\omega=\omega_{0}+q \omega_{1}+q^{2} \omega_{2}+q^{3} \omega_{3}+$
\star This leads to a hierarchical system of equations in orders of q [4]:
$\omega_{0}^{2} \ddot{1}_{1}(s)+\omega_{0}^{2} u_{1}(s)=\frac{1}{u_{0}^{4}} \sin \frac{\Omega s}{\omega}$
$\omega_{0}^{2} \ddot{u}_{2}(s)+\omega_{0}^{2} u_{2}(s)=-2 \omega_{0} \omega_{1} \ddot{u}_{1}(s)-\frac{4}{u_{0}^{5}} u_{1}(s) \sin \frac{\Omega s}{\omega}+\alpha u_{1}(s)^{2}$
$\omega_{0}^{2} \ddot{u}_{3}(s)+\omega_{0}^{2} u_{3}(s)=-2 \omega_{0} \omega_{2} \ddot{u}_{1}(s)-2 \beta u_{1}(s)^{3}+2 \alpha u_{1}(s) u_{2}(s)-\omega_{1}^{2} \ddot{u}_{1}(s$
$\frac{10}{u_{0}^{6}} u_{1}(s)^{2} \sin \frac{\Omega s}{\omega}-\frac{4}{u_{0}^{5}} u_{2}(s) \sin \frac{\Omega s}{\omega}-2 \omega_{0} \omega_{1} \ddot{u}_{2}(s)$,
where $\alpha=10 p / u_{0}^{6}+6 / u_{0}^{5}$ and $\beta=10 p / u_{0}^{7}+5 / u_{0}^{6}$.

Fourier analysis of numerically obtained solutions
\star The graphs give the Fourier spectrum of $u(t)$ for $p=0.4, q=0.06$ with basic modes $\omega_{0} \approx 2.06638$ and Ω, higher harmonics $n \omega_{0}$ and $m \Omega$, as well as linear combinations $n \omega_{0}+m \Omega$, including the beating frequency $\left|\Omega-\omega_{0}\right|$

\star Resonant effects are present for $\Omega \approx \omega_{0}$. Also, a complex peak structure close to ω_{0} appears, and a shift in the frequency $\omega_{0} \rightarrow \omega$ is clearly visible.

\star Prominent peaks around ω_{0} are equidistant, as we see from the graph for $q=0.1$. By fitting $\omega(k)=A \times k+B$ to numerical data, we determine $A=|\omega-\Omega|$ for each Ω, and calculate $\omega=\Omega \pm A$, as given in the table

$\Omega \quad A \quad \Omega-A \quad \Omega+A$ | 2.00 | 0.0615 | 1.9352 | 2.0609 |
| :--- | :--- | :--- | :--- |
| 2.046 | | | | | 2.04 | 0.0166 | 2.0232 | 2.0562 |
| :--- | :--- | :--- | :--- |
| .05 | 0.0218 | 2.0279 | 2.0719 | $\begin{array}{lllll}2.05 & 0.0218 & 2.0279 & 2.0719 \\ 2.06 & 0.0273 & 2.0326 & 2.0876\end{array}$

Experimental setup
\star Cylindrical trap with anisotropy $\lambda=0.021, p=15, q=10$. Linear regime: quadrupole mode $\omega_{q}=0.035375$, breathing mode $\omega_{b}=2.00002$. Numerical results for driving frequency $\Omega=0.06$

Result: Frequency shift should be measurable in the experiment [1] for sufficiently large driving amplitude q.

Frequency shift of the collective mode
\star Frequency shift of the main collective mode is obtained using the third order Poincaré-Lindstedt method in q. First order correction ω_{1} vanishes, leading to the frequency shift quadratic in q :

$$
\omega=\omega_{0}+q^{2} \frac{\operatorname{Polynomial}(\Omega)}{\left(\Omega^{2}-\omega_{0}^{2}\right)^{2}\left(\Omega^{2}-4 \omega_{0}^{2}\right)}
$$

\star Good agreement of numerical and analytical results is obtained for the frequency shift far from resonances for $p=0.4$ and different q :

\star The most significant shift of up to 5% is observed for $\Omega \approx \omega_{0}$ and large q
Summary and outlook

* Using numerical Fourier analysis and analytical Poincaré-Lindstedt method, we calculated the frequency shift of the collective mode for a spherically symmetric BEC excited by harmonic modulation of the scattering length. \star In order to compare analytical results with the experiment [1], we are working on a similar perturbation theory for a cylindrically symmetric BEC. \star To further study nonlinear BEC dynamics effects, we will use numerical simulations of the full time-dependent Gross-Pitaevskii equation

-References

1] S. E. Pollack, D. Dries, et. al., PRA 81053627 (2010) 2] F. Dalfovo, C. Minniti, L. P. Pitaevskii PRA 56, 4855 (1997) [3] V. M. Pérez-García, H. Michinel, et. al., PRL 775320 (1996) 4] A. Pelster, H. Kleinert, M. Schanz, PRE 67, 016604 (2003)

- Support: Serbian Ministry of Science (ON141035, ON171017, PI-BEC) DAAD - German Academic and Exchange Service (PI-BEC), and European Commission (EGI-InSPIRE, PRACE-1IP and HP-SEE)

Ministry of
Science of the
Republic of Republic of
Serbia Serbia

