Fractional quantum Hall effect in bilayers and wide quantum wells at $\nu=1 / 2$

Z. Papić ${ }^{1,2}$
${ }^{1}$ Institute of Physics, Belgrade, Serbia
${ }^{2}$ Laboratoire de Physique des Solides, Université Paris-Sud, France

LPS Orsay, 25/06/2010

work done with M. Goerbig, M. Milovanović and N. Regnault

Outline

(1) Introduction
(2) Moore-Read state at $\nu=1 / 2$ single layer
(3) Quantum Hall bilayer $\nu=1 / 2$ with tunneling

4 Wide quantum wells
(5) How to create the Pfaffian in the LLL?

Trial wave functions for FQHE

H. Stormer (1999).

- Laughlin $\nu=1 / m, m$-odd:

$$
\begin{aligned}
& \Psi=\prod_{i<j}\left(z_{i}-z_{j}\right)^{m}, z=x-i y \\
& l_{B}=\sqrt{\hbar c / e B}
\end{aligned}
$$

- Jain's CFs: $\nu=\nu^{*} /\left(2 p \nu^{*} \pm 1\right), \Psi_{\nu}=$ $\mathcal{P}_{L L L} \prod_{i<j}\left(z_{i}-z_{j}\right)^{2 p} \Phi_{\nu^{*}}$
- Composite Fermi liquid $\nu^{*} \rightarrow \infty$ i.e.
$\nu=1 / 2$:

- At $\nu=2+1 / 2=5 / 2$ BCS instability of CFs: Moore-Read Pfaffian $\Psi_{\mathrm{Pf}}=\operatorname{Pf}\left(\frac{1}{z_{i}-z_{j}}\right) \prod_{i<j}\left(z_{i}-z_{j}\right)^{2}$

BCS effective description

Read and Green, PRB 61, 10267 (2000)

- near $\mathbf{k}=0$ and $\Delta_{\mathbf{k}}=\Delta\left(k_{x}-i k_{y}\right)$:

$$
H_{\mathrm{eff}}=\sum_{\mathbf{k}}\left\{\left(\epsilon_{\mathbf{k}}-\mu\right) c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}}+\left(\Delta_{\mathbf{k}} c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}}^{\dagger}+h . c .\right)\right\}
$$

- Solutions:

$$
E_{\mathbf{k}}=\sqrt{\left(\epsilon_{\mathbf{k}}-\mu\right)^{2}+\left|\Delta_{\mathbf{k}}\right|^{2}}, \Psi_{0}=\prod_{\mathbf{k}}\left(u_{\mathbf{k}}+v_{\mathbf{k}} c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}}^{\dagger}\right)|v a c c\rangle
$$

- strong pairing phase: $\epsilon_{\mathbf{k}}-\mu>0,\left|u_{\mathbf{k}}\right| \rightarrow 1,\left|v_{\mathbf{k}}\right| \rightarrow 0$
- weak pairing phase: $\epsilon_{\mathbf{k}}-\mu<0,\left|u_{\mathbf{k}}\right| \rightarrow 0,\left|v_{\mathbf{k}}\right| \rightarrow 1$
- in the weak pairing phase, $g_{\mathbf{k}}=v_{\mathbf{k}} / u_{\mathbf{k}} \rightarrow$ asymptotically $g(\mathbf{r}) \propto 1 / z$ (Moore-Read state)
- Supp. $\mu>0$ and large, $\Delta \approx$ const $\rightarrow \mathrm{E}_{\mathbf{k}} \approx \mu-\epsilon_{\mathbf{k}}+\frac{\left|\Delta_{\mathbf{k}}\right|^{2}}{2 \mu}$
- Excitations are unstable around $\mathbf{k}=0 \rightarrow$ minimum moves to $\mathbf{k}=\mathbf{k}_{F}$ (CF liquid)
- but Ψ_{0} still describes an unstable point (excited state of CFL)

Can we engineer non-Abelian states?

- using 3-body, 4-body etc. interaction (coupling with excited LLs)
- try with Zhang-Das Sarma finite thickness interaction
$V_{Z D S}=1 / \sqrt{r^{2}+w^{2}}$

Figure: $\left\langle\Psi_{\text {Pfaffian }} \mid \Psi_{\text {exact }}\right\rangle$

Figure: $\left\langle\Psi_{\text {exact }}(w=0) \mid \Psi_{\text {exact }}(w)\right\rangle$:
Destruction of the CF sea
[Z.Papić et al., Phys. Rev. B 80, 201303 (2009)]

Entanglement measures

- look at one ground state $|\Psi\rangle$ on the sphere
- cut the system into two parts, A and B, in orbital space (\sim real space, geometrical partition)
- reduced density matrix $\rho_{A}=\operatorname{Tr}_{B}|\Psi\rangle\langle\Psi|$
- entanglement spectrum [Li \& Haldane] : plot $\xi=-\log \lambda_{A}$ vs L_{A}^{z} for fixed cut and N_{A}

Multicomponent and non-Abelian states in LLL

Halperin states

$$
\Psi_{m m^{\prime} n}=\prod_{i<j}\left(z_{i \uparrow}-z_{j \uparrow}\right)^{m} \prod_{k<l}\left(z_{k \downarrow}-z_{l \downarrow}\right)^{m^{\prime}} \prod_{p, q}\left(z_{p \uparrow}-z_{q \downarrow}\right)^{n}
$$

Luhman et al.,PRL 101, 266804 (2008)
Shabani et al.,PRL 103, 256802 (2009) \longrightarrow

BCS description for the bilayer $\nu=1 / 2$

- Coulomb bilayer (d - distance between layers)

$$
H=-\Delta_{S A S} S_{x}+\sum_{i<j, \sigma \in \uparrow, \downarrow} \frac{e^{2}}{\epsilon\left|\mathbf{r}_{i \sigma}-\mathbf{r}_{j \sigma}\right|}+\sum_{i, j} \frac{e^{2}}{\epsilon \sqrt{\left(\mathbf{r}_{i \uparrow}-\mathbf{r}_{j \downarrow}\right)^{2}+d^{2}}}
$$

- effective BCS description for neutral fermions, $\tilde{\epsilon}_{\mathbf{k}}=\epsilon_{\mathbf{k}}-\mu$,
$H=\sum_{\mathbf{k}} \tilde{\epsilon}_{\mathbf{k}}\left(c_{\mathbf{k} \uparrow}^{\dagger} c_{\mathbf{k} \uparrow}+\uparrow \leftrightarrow \downarrow\right)+\left(\Delta_{\mathbf{k}} c_{\mathbf{k} \uparrow}^{\dagger} c_{-\mathbf{k} \downarrow}^{\dagger}+\right.$ H.c. $)-\frac{\Delta_{S A S}}{2}\left(c_{\mathbf{k} \uparrow}^{\dagger} c_{\mathbf{k} \downarrow}+\uparrow \leftrightarrow \downarrow\right)$
- H can be split into an even and odd channel $(\uparrow \pm \downarrow)$
- $\mu^{e}=\mu+\Delta_{S A S} / 2, \mu^{o}=\mu-\Delta_{S A S} / 2$
- in the even channel: $\left|\psi_{\mathrm{BCS}}\right\rangle=\prod_{\mathbf{k}}\left(1+g_{\mathbf{k}} c_{\mathbf{k}, e}^{\dagger} c_{-\mathbf{k}, e}^{\dagger}\right) \mid$ vacuum \rangle
- but in the interacting system $\mu^{\text {eff }}=P \mu^{e}+(1-P) \mu^{o} \rightarrow$ what is P ?
- if μ^{e} is very large, unstable excitations \rightarrow CFL liquid

Exact diagonalization: Sphere $\left(d=l_{B}\right)$

Figure: Overlaps, $d=l_{B}, \delta=-3$

Figure: GS energies, $d=l_{B}$
[Z.Papić et al., arXiv:0912.3103]

Exact diagonalization: Torus

Figure: $\Delta_{S A S}=0.03 e^{2} / \epsilon l_{B}$
[Z.Papić et al., arXiv:0912.3103]

Bilayer results: phase diagram

Model of the wide quantum well

- $H=-\Delta_{S A S} S_{z}-\Delta \rho S_{x}+V^{\text {Coulomb }}$
- Calculate overlaps with trial states
- Mean values
- $\left\langle S_{x}\right\rangle$ - creates charge imbalance in the well
- $\left\langle S_{z}\right\rangle$ - Zeeman field
- At $\nu=1 / 2$ we expect transition between 331 and Pfaffian as the density is made more asymmetric
[Z.Papić et al., PRB 79, 245325 (2009).]

Phase diagram $\nu=1 / 2, w=4 l_{B}$ (Sphere)

(a) $(3,3,1)$

(b) Pfaffian

(d) $<\mathrm{S}_{\mathrm{z}}>$

Figure: LLL
(a) $(3,3,1)$

(c) $\left\langle S_{x}>\right.$

(b) Pfaffian

(d) $\left\langle S_{z}\right\rangle$

Figure: 2nd LL
[Z.Papić (unpublished)]

Neutral gap

(a) $(3,3,1)$

(b) Pfaffian

(c) $<S_{x}>$

(d) Gap

Figure: $\Delta \rho=0$
(a) $(3,3,1)$

(c) $\left\langle S_{x}>\right.$

(b) Pfaffian

(d) Gap

Figure: $\Delta \rho=0.1 e^{2} / \epsilon l_{B}$
[Z.Papić (unpublished)]

Quantum well $\nu=1 / 2$ on torus

Figure: Spectrum as a function of w $\left(\Delta_{S A S}=\Delta \rho=0\right)$

Figure: Effect of $\Delta \rho$
$\left(\Delta_{S A S}=0.004 e^{2} / \epsilon l_{B}, w=4 l_{B}\right)$
[Z.Papić (unpublished)]

How to create the Pfaffian in the LLL?

- two spin species, $\Delta_{\mathbf{k}}^{\uparrow \downarrow}$ pairing and a constraint

$$
\lambda(\mathbf{r}) \Psi_{\mathrm{odd}}^{\dagger}(\mathbf{r}) \Psi_{\text {odd }}(\mathbf{r})=\lambda(\mathbf{r})\left[\Psi_{\uparrow}^{\dagger}(\mathbf{r})-\Psi_{\downarrow}^{\dagger}(\mathbf{r})\right]\left[\Psi_{\uparrow}(\mathbf{r})-\Psi_{\downarrow}(\mathbf{r})\right]
$$

- λ bosonic multiplier, similar to $\Delta_{S A S}$
- Only difference from tunneling Hamiltonian: $\mu \rightarrow \mu^{t}=\mu-\lambda$
- diagonalize H using Bogoliubov, again obtain two channels:

$$
\tilde{\mu}^{e}=\mu \text { and } \tilde{\mu}^{o}=\mu-2 \lambda
$$

- stationary point $\frac{\partial H}{\partial \lambda}=0 \rightarrow \lambda \rightarrow \infty$
- constant $\tilde{\mu}^{e}=\mu$ (avoids CFL), strong coupling in odd channel $=$ Pfaffian for $\lambda \rightarrow \infty$

Physical condition

- We seek a Hamiltonian which has the property $\delta \mu^{t}=-\lambda$
- $\rightarrow \frac{\partial \Omega}{\partial \lambda}=N$
- Partial differential equation for the variation of density $\left(k_{F}\right)$ with tunneling $\lambda\left(\Delta_{S A S}\right)$
- large tunneling limit, $\Delta_{S A S} \gg \hbar^{2} k_{F}^{2} / 2 m^{*}: \frac{\partial N\left(k_{F}\right)}{\partial \Delta_{S A S}} \propto-N\left(k_{F}\right)$

Figure: 331-Pf transition, $\Delta^{\uparrow \downarrow} \neq 0, \Delta^{\uparrow \uparrow}=0$

Summary

- Pfaffian can arise as an excited state of the CFL which becomes the ground state in the systems with sufficiently softened Coulomb interaction or it can be a phase with a small gap
- in bilayers and wide quantum wells, there is possibility for a critical Moore-Read phase
- we can have a transition from a compressible state (with some p-wave pairing) to the Moore-Read Pfaffian
- if we want to generate the Pfaffian from the 331 state, the total density should be reduced as $\Delta_{S A S}$ is increased

Possibility for the "critical" Pfaffian

- if we add $\Delta_{\mathbf{k}}^{\uparrow \uparrow}$ pairing $\rightarrow E_{e}=\sqrt{\left(\tilde{\epsilon}_{\mathbf{k}}-\Delta_{S A S} / 2\right)^{2}+\left|\Delta_{\mathbf{k}}^{\uparrow \downarrow}+2 \Delta_{\mathbf{k}}^{\uparrow \uparrow}\right|^{2}}$,

$$
E_{o}=\sqrt{\left(\tilde{\epsilon}_{\mathbf{k}}+\Delta_{S A S} / 2\right)^{2}+\left|\Delta_{\mathbf{k}}^{\uparrow \downarrow}-2 \Delta_{\mathbf{k}}^{\uparrow \uparrow}\right|^{2}}
$$

- odd channel can be gapless and we can have a CFL - Pfaffian transition with the Pfaffian having a bigger gap
- more likely to have $\Delta^{\uparrow \uparrow} \neq 0$ in the 2 nd LL

Figure: Possibility for the critical Pfaffian before complete polarization ($d=0.4 l_{B}$)

