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FQHE : testing anyonic statistics




PV (rn,n)=V(n,n)= e'Py (ri,n) 2R (r1,

r2) =y (rl, r2)

@ =0 — bosons or ¢ =71 — fermions

experimentally checked !

Wilzcek approach : a continuous and adiabatic process
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Beyond fermions and bosons in 2D



Toward non-abelian statistics

v, — ‘ j — >, UapVp

exchange is described by a (non diagonal)matrix U,p

eswapland2:V,— >, Uy,
@swap2and3:V,— %", Usg\llb

U2 and U% do not commute
ab ab

FQHE : an experimental test at hand!



Topological quantum computing :
quantum computation in your mobile phone



Landau level
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Filling factor : v = g = N,

Cyclotron frequency : we = %

Lowest Landau level (v < 1) : z™exp (—|z[?/41?)
N-body wave function : W = P(zy, ..., zy) exp(— >_ | zi|?/4)



The fractional quantum Hall effect
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The incompressible liquid picture :
@ gap (activated law for Ry (T))
from a purely interacting system

@ only chiral edge excitations (no

MAGNETIC FIELD [T]

(no kinetic energy)

back-scattering)
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The surprising v = 5/2 case
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@ theory : physics of higher Landau level map onto the LLL

physics
o first incompressible state (1987 and 1999) with an even
denominator

o theory : Moore-Read state — e/4 charges + non abelian
excitations



Experimental evidences for non-abelian statistics 7

Interferometer (2 QPC) (insert lots of theoricists here)
R.L. Willett, L.N. Pfeiffer, K.W. West (PNAS 0812599106)
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Another approach : switching noise (Grosfeld, Simon, Stern 06)
experiments by W. Kang (Univ. of Chicago)



Wavefunctions and numerics




The theoretical approaches

FQHE is a hard N-body problem : the Hamlitonian is just the
(projected) interaction !

Two major methods :

@ variational method : find a wave functions describing low
energy physics (symmetries, CFT, model...)
@ numerical calculation : exact diagonalizations

e a more realistic description of the physical system

o the spectrum (complete or partial), the eigenstates, (operator
mean values)...

e require large computer power (dim ~ 3.108 — 2.5Gb per
vector)

FQHE can be seen starting from N=4!



The Laughlin wave function

A (very) good approximation of the ground state at v = %

=
\UL(Zl, ...ZN) = H(Zi _ Zj)3e DO P
i<j

AP

A L

add one flux quantum at zg = one quasi-hole
\Uqh(zl, ...ZN) = H (ZO — Z,') WL(Zla ...ZN)
i

p

A L

@ Locally, create one quasi-hole with fractional charge ?
@ “"Wilczek” approach : quasi-holes obey fractional statistics




The Pfaffian / Moore-Read state

1 2
Wpf (21, ...,ZN) = Pf (Z,' — ZJ> H (Z,' - ZJ)
1<J
° cCoFrlrreIators of a Z, parafermions ::‘.o :..‘.0
o Cappelli et al. (2001) : 2 color .
approach (bosons)

@ add/remove one flux quanta — create a pair of quasi-holes
/quasi-electrons (+e/4)

o 21 degenerate states for 2n quasi-particles — non Abelian
statistics !



Pfaffian state : numerical evidences

@ incompressible state only for even N (pairing)
e topological properties : sphere (shift between N and Ny) and
torus (degeneracies)

Overlap :

o8 ] @ scalar product between a test
o5 | state and the “exact” state
] @ require to tune the interaction

0.4
| to get a good agreement
N2 - @ here 0.919 for N = 20,

0 0.02 0.04 0.06 0.08 0.1 .
v, dim = 1.9 x 108

Overlap

0.2




When overlaps are misleading

At least one know example where two different states have large
overlaps : Abelian (Jain CF) vs non-abelian (Gaffnian).
N = 16,v = 2/5,dim = 1.5 x 108, overlap is 0.935.

@ You can't fight the exponential ! : always a few number of
particles N = 12 dim=16660(418), N = 16
dim=155484150(70180)

@ What is the meaning of the overlap ?

o What is a bad overlap : 0 (wrong quantum numbers) or as

good as a random vector (~ 1/\/dim)

e What is a good overlap : use Laughlin as a reference 7 0.988
for v = 1/3 with dim = 1.3 x 108

o What is missing : how overlap should scale (decrease) with N
while preserving the same properties ? Power vs exponential
decay ?




Entanglement spectrum




Notations in the LLL

@ one-body wavefunction :

bm(z) = (2rmI2m)~1/22M exp(—|z|? /4)
o N-body wave functions : W = P(zy, ..., zy) exp(— 3_ | zi|>/4)
@ decomposition on the N-body basis ¥ = Zu cusly,

@ Slater determinants s/, are labeled by occupation numbers :

(z1—2) = (#-23)-3(H2—-22)

3210

2123 - 232 — [1]0]0[1] —= 1001
3210

Z%Zé—zgz} mm — 0110

No known formula for the ¢, (even for the Laughlin state!)



Generating the decomposition

e Mathematica/Maple/Maxima/PhD student :
analytical calculations (a few particles)

@ Exact diagonalizations : directly work in the n-body basis
both CPU and memory intensive calculations = require good
workstation or cluster/supercomputer

Recursion formula for the ¢, for Jack polynomial (B.A.
Bernevig and NR)
e for bosons : Ha (1995), Dumitriua and Shumance (2007)
e for fermions : brute force way is not trivial (Kostka numbers,
Schur polynomials)
@ less CPU / memory intensive (N = 15, 500 times less CPU
time, only a single PC!)

e a few additional system sizes (can't fight the exponential)



[ @ - Jack generator - Mozilla Firefox ———— v oA *®

Fle Edit View History Bookmarks Tools Help
«es -6 I@|http‘llvwvwnicl<-ux.org/~regnau\t/jad< L“" @,
[ Most Visited ~

Jack generator

Nbr of particles =6 Nbr of flux quanta =10 a =-2 Maximum number of
monomials = 338

Root paron . 1¢] 0| 1| 0] 1+] 0] 4+| 0] 1+] 0~

next

want fermions?

| Done P

Get your own Jack from the web! (up to some decent sizes) +
entanglement spectrums



Decomposition vs overlap

@ marketing department : decomposition is the state DNA

@ mathematics department : this is a basis! Completely defines
the state.

@ mathematician vs physicist :

e two states are equal if they have the same decomposition
e two states correspond to the same phase, if for large N, all the
important measurable quantities are identical.

@ much more information than the overlap (billions vs single
number)

how to process this huge amount of information ?



Entanglement entropy

example : system made of two spins 1/2

A . B

Von Neumann entropy for the pure system
Jf Jf p=W)(¥|  S=-Tr(plogp)=0

Reduced density matrix pa = Trgp
Entropy for the A subsystem?

M —m=(p0) —5=0

Z5Uun) — o= (2 0) — sa—teg2

mesurement of the entanglement



Entanglement entropy for the FQHE

@ look at one ground state |W) on the sphere

@ cut the system into two parts A and B in orbital space (~~ real
space, geometrical partition)

e reduced density matrix pa = Trg |V) (V|, block-diagonal wrt
NA and L2

@ compute the entanglement entropy Sp = —Tra (palog pa).

A

B

@ topological entanglement entropy : extract the v from
Sa = cL — v (Haque et al.) : highly non-trivial, require two
thermodynamical extrapolations...

@ looking at the entanglement spectrum : plot £ = —log A4 vs
L2 for fixed cut and N4



Entanglement spectrum (Lee and Haldane)

40 45 50 55 60 65

Laughlin N =13, /4 = 36 (hemisphere cut), Na =6
L2 angular momentum of A, £ = —log Aa, Aa's are pa eigenvalues.



Entanglement spectrum

o Schmidt decomposition [W) =3 exp(—¢/2) |A, p) ® |B, p)
@ a way to look at the Fock space decomposition

@ “banana” shaped spectrum for pure CFT state (not only
Jacks) with a given maximum L2

@ “low energy” part : a signature of the state (edge mode
degeneracy).

example Laughlin (1,1,2) : W, W x .z, W, x >, z? and
Y, x Z,Q zjzj
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LZmax L 2 max -1




Coulomb case and entanglement gap
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Entanglement spectrum : some results

@ probing non abelian statistics (Lee, Haldane 2008)

@ looking at (precursor of ) phase transition through closing
entanglement gap (Zozulya, Haque, NR, 2009)

o differentiate states with large overlap but different excitations
(from the ground state only!) (NR, Bernervig, Haldane
2009)

@ non-trivial relation between ES and edge mode (Bernervig,
NR 2009)

@ when N — oo recover degenerate multiplets and linear
(relativistic) dispersion relation for the edge mode (Thomale,
Stedyniak, NR, Bernervig 2009)



Disconnected (reducible) squeezing sequences

A

(Zo1010101)

1010

\/

01110

(0200

00300 )

@ a given partition (blue box)

@ cut the system into two parts A and
B in orbital space (=~ real space)

@ disconnected squeezing sequence if
you can reach the root partition
(red box) without involving
squeezing between A and B

@ Product rule : cp20000300 = €0200 X C00300

@ true for any (fermionic) Jack polynomials!

@ unnormalized basis, proof based on the recursion formula



Entanglement spectrum

A ?
Z max -*

Why only one state at L

° LA

Z max

is the L2 of the root partition

o fixed L2 involves partitions with disconnected squeezing
sequence between A and B

@ use the product rules : N = 4 four partitions, half cut

c1010101/1010101)
€1010020/1010020)
€0200101]/0200101)
€0200020|0200020)
(€1010/1010) + €9200/0200)) ® (c101/101) + co20/020))

+ o+ o+

Laughlin liquid in A ® Laughlin liquid in B!



Conformal limit




Defining a “clear” entropy gap

@ entanglement gap collapses a few momenta away from the
maximum one (the system “feels” the edge)

@ current definition of the ES contains the magnetic length
@ remove the information coming from the geometry

e example : Coulomb v =1/2 N=11 bosons

L L L L L
10 15 20 25 30 35



Defining a “clear” entropy gap

@ entanglement gap collapses a few momenta away from the
maximum one (the system “feels” the edge)

@ current definition of the ES contains the magnetic length
@ remove the information coming from the geometry

e example : Coulomb v =1/2 N=11 bosons

L L L L L
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Going through a phase transition

N=11 bosons, ¥ = 1/2 Coulomb with tuned short range
component § Vj

N=11, Ng=20, §V(=0.000, overlap =0.9992
30

25 f
20 f

10

gap closing despite large square overlap (0.989)!



Entanglement adiabatically continuable states

from Moore-Read state to delta ground state N=14 bosons, v =1

Ha=1=X) > 6(ri—r)d(r—n)+ Ao

i<j<k i<j

20

No gap closing despite moderate square overlap (0.887)!



Conclusions

@ exotic statistics are an exciting topic
@ getting closer to experimental evidences in the FQH regime.

@ numerical calculations are a powerful method to probe the
FQHE

@ more tools are needed to clearly identify (precursor of) phases
@ entanglement spectrum a way to investigate this problem

@ conformal limit a more robust approach to the entanglement
spectra

@ what about other interacting n-body problem ?
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