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OutlineOutline

• High-TC

 

superconductors: doped Mott insulators

• Metal-insulator transition; Coulomb glass

• Role of inhomogeneities

 

in cuprates

 

-

 

one of the major open issues

• Nature of the ground state

 

in cuprates? Case of La2

 

CuO4

 

at low doping:
-

 

hysteretic and memory effects in magnetotransport
-

 

resistance fluctuations (noise)
-

 

microscopic mechanism

• Conclusions and future work



Complex behavior of highComplex behavior of high--TTCC

 

superconductorssuperconductors

• single-electron band theory

 

of solids fails

• undoped

 

parent compound (e.g. La2

 

CuO4

 

):

 

Mott insulator, not a metal

• only a few per cent 
(≈5-6%) of dopants

 

cause
a transition

 

from an
insulating

 

to a (super)
conducting state

• 3D Néel

 

order

 

at 310 K
in the parent material

• 3D Néel

 

order suppressed
with ≈2-3% doping



Parent Parent cupratecuprate
 

LaLa22

 

CuOCuO44

atet

btet

Cu2+

O2-

La3+

c

3D long-range antiferromagnetic

 

(AF) order:

CuO2

 

planes

• weak FM moments along c-axis in each ab

 

plane   
due to spin canting

• one hole on each Cu site

• in-plane AF exchange interaction J||

 

~ 0.1 eV
• weak inter-plane interaction (J||

 

/J⊥

 

~ 105)



Parent Parent cupratecuprate
 

LaLa22

 

CuOCuO44 • Mott insulator

Conventional metal Mott insulator

U: on-site 
Coulomb repulsion

How does a transition from a Mott insulator to a conductor 
occur as a function of doping?



General problem

electron-electron interactions
(Mott insulator)

disorder due to impurities, 
defects  (Anderson insulator)

Result: formation of localized 
(bound) states          no conduction 

• high density –

 

kinetic energy (Fermi energy) dominates
• low density

 

–

 

potential energy dominates:



Metal-insulator transition: a quantum critical point
• Experiments: a continuous

 

transition; sharp phase transition at T=0

•“dynamical scaling”

 

in the critical region: σ(ns

 

,T) ∝

 

Tx

 

f(T/δn
zν)

• power-law critical behavior: σ(ns

 

,T=0) ∝ δn
μ

Control parameter 
δn

 

=(ns

 

-nc

 

)/nc
(ns

 

-

 

carrier density)
Insulator
σ(T=0)=0

Crossover temperature
T0

 

~|δn

 

|zν

Metal
σ(T=0)≠0

Theoretical problems: no broken symmetry; order parameter?  No small
parameter; elementary excitations?

 

Standard approaches fail



It gets even more complicated…

• Coulomb repulsion: keep electrons apart (uniform

 

density)
• Random potential: nonuniform

 

density

• competition between Coulomb interactions

 

and disorder

Frustration! (can’t

 

make everyone happy)

emergence of

 

(exponentially)

 

many

 

metastable

 

states 
with similar (free) energy

Fluid Glass

configuration space

Experimental signature: slow,

 

out-of-equilibrium dynamics
Coulomb

glass



Coulomb glassCoulomb glass

• expected in Anderson insulators with strong electron-electron interactions      
[M. Pollak

 

(1970); Efros, Shklovskii

 

(1975); Davies, Lee, Rice (1982,84)]

Observations of glassiness in electronic systems –

 

very few:

• slow relaxations in GaAs

 

capacitance (Monroe et al.)
• slow relaxations and thermal hysteresis in conductivity of granular films   
(Goldman et al., Wu et al., Frydman

 

et al.)

• slow relaxations of photoconductivity in YH3-δ

 

(Lee et al.)

• slow relaxations, aging, memory in conductivity of  InOx

 

(Ovadyahu

 

et al.)
and granular Al

 

(Grenet

 

et al.)

• 2D electrons in Si

 

(DP et al.):

 

slow relaxations, aging, memory;
slow, correlated dynamics –

 

from insulating to (poorly) metallic

• lightly doped cuprates

 

(DP et al.)

my work



Doped LaDoped La22

 

CuOCuO44

atet

btet

Cu2+

O2-

La3+

c

3D long-range antiferromagnetic

 

(AF) order:

CuO2

 

planes

• weak FM moments along c-axis in each ab

 

plane   
due to spin canting

• doped holes go into the 2D CuO2

 

planes

⇒ Long-range AF order destroyed
for x ≥

 

0.02 (Sr), x>0.03 (Li) -
short-range magnetic order persists

• AF domains;

 

holes along         
(antiphase)

 

domain walls?

Sr2+



Complex behavior of highComplex behavior of high--TTCC

 

superconductorssuperconductors

Te
m

pe
ra

tu
re

carrier concentration

Emergence of
nanoscale

inhomogeneities!

• spin glass behavior well established at low T



Computer modeling

(“stripe-

 

and clump-

 forming systems”)
[Reichhardt

 

et al., Europhys. 
Lett. 72, 444 (2005)]

Nanoscale
 

charge inhomogeneities

STM images

Ca2-x

 

Nax

 

CuO2

 

Cl2 [Kohsaka

 

et al., Phys. Rev. 
Lett. 93, 097004 (2004)]

• global phase separation not possible because of  
charge neutrality

• (infinitely?) many possible arrangements

 

of nanoscopic

 

ordered regions with  
comparable energies               charge (Coulomb) glass?



Spin

MotivationMotivation

[C.Panagopoulos

 

and 
V.Dobrosavljević, PRB 
72, 014536 (2005) and
references therein]

• Doped Mott insulators
• Insulator to (super) conductor transition?

Glassy insulator?

Quantum 
glass transition?

Homogeneous
metal

Metal-insulator transition?
Inhomogeneous,
conducting glassy 
state?

Emergence of
nanoscale

inhomogeneities!



MotivationMotivation • Doped Mott insulators
• Insulator to (super) conductor transition?

nc

 

ng

 

carrier density

Glassy insulator Metallic glassy phase
(kF

 

l

 

< 1; “bad”

 

metal)
Metal

metal-insulator transition glass transition

Spin

x

MIT

 

in a 2DES

 

in Si 
at T=0

[Popović

 

et al., PRLs

 
from 2002 to 2007; 
many signatures of 
glassiness; Coulomb
glass; Tg

 

=0]

Mott transition with 
disorder –

 

theory:
V. Dobrosavljević
et al., PRLs …
(1999-2005)



Glassy charge dynamics in Glassy charge dynamics in cupratescuprates??
Nature of the ground state?Nature of the ground state?

• measure response of the system

 

to

 

some kind 
of a perturbation ⇒ slow, nonexponential

 

relaxations

• fluctuations –

 

provide complementary information (correlations)

How to probe glassy dynamics?

For charge glass:

 

transport

 

(bulk probe;

 

mean values of resistivity)
and resistance noise

 

(fluctuations)

Glasses:

 

-

 

many metastable

 

states
-

 

slow, nonequilibrium

 

dynamics

supercooled

 

water



Lightly doped LaLightly doped La22

 

CuOCuO44

-

 

a good candidate

 

(well characterized, disorder)

Li1+

Sr2+

x

Te
m

pe
ra

tu
re

AF

SG
Li-LCO LSCO

(a)
La2

 

Cux

 

Li1-x

 

O4

 

in 
antiferromagnetic
phase (Tf

 

~ 7-8 K)

La2-x

 

Srx

 

CuO4 in 
spin-glass

 

phase
(Tsg

 

~ 7-8 K)

x=0.03 in this talk:

Dielectric measurements:

 

an electronic glass state 
AF Li-LCO:

 

Park et al., PRL 94, 017002 (2005);
x=0.03 LSCO:

 

Jelbert

 

et al., PRB 78, 132513 (2008)

• Sr

 

and Li (no magnetic moment)

 

doped:
similar magnetic

 

behavior, but no

 

SC in Li-LCO



Temperature dependence of the resistanceTemperature dependence of the resistance

Variable-range hopping (VRH):  R∝

 

exp[(T0

 

/T)n] , n=1/3 (2D exponent)
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Actually, it depends on how the sample is cooled…



History dependence in transport: History dependence in transport: 
zerozero--field cooling (ZFC) field cooling (ZFC) vs.vs. field cooling (FC)field cooling (FC)

Onset T <Tsg

 

≈7 K

Difference between FC and ZFC resistance R(B=0) 

LSCO; Rab • observed in both Rab

 

and Rc

 

, 
for both B||ab

 

and B||c
• difference disappears at much 
lower T in ab

 

sample

Signature of 
out-of-equilibrium dynamics
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Memory effectsMemory effects (observed in both Rab

 

and Rc

 

,
for both B||c

 

and B||ab)

• higher B

 

enable overcoming
higher energy

 

barriers
• R(B=0) determined by the highest B  
previously applied -

 

memory of  
magnetic history
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Also, manganites: Levy et al., PRL 89, 137001 (2002);
YBCO: Ando et al., PRL 83, 2813 (1999)



Hysteretic behavior of the resistanceHysteretic behavior of the resistance (Rc

 

, Rab

 

; 
B||c

 

and B||ab)

• return point memory
• incongruent subloops

 

⇒ interactions between domains

Tonset

 

< Tsg
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axis

Subloops

 

shifted 
vertically to 0 
for comparison

LSCO; Rc

• hole-rich regions between
interacting

 

hole-poor 
AF domains

Do the holes merely
“follow”

 

the spins?

Memory in R wiped out for T ≥

 

1K, spin glass transition TSG

 

≈

 

7K
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Resistance fluctuations (noise); LSCOResistance fluctuations (noise); LSCO

• noise Gaussian at “high”

 

T 
(e.g. T > 0.18 K for Rab

 

noise)

• at low T, non-Gaussian

 

noise
metastable

 

states (out-of-equilibrium)

Rc

Rab



Probability density functions (PDF) of fluctuationsProbability density functions (PDF) of fluctuations

Noise in Rab

• structure depends on the observation time

 

–
different states contribute ⇒

 

nonergodic



- increase sampling time to 12   
hours, but

 

never becomes  
Gaussian at low T

• nonergodic, does not reach
equilibrium on experimental 
time scales at low T

Onset of glassiness in transport at T<< TSG

 

:
suggests spin and charge glass not directly related



Noise statistics:Noise statistics:
T and B dependence T and B dependence • Power spectrum:  SR

 

~ 1/fα
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• α

 

increases

 

as T is reduced;  no effect of B!

fewer metastable

 

states

 

that dominate
at low T

 

in the exp. time window

Slowing down of the dynamics as T→0



Second spectrum  Second spectrum  SS22

 

(f(f22

 

, f), f)

• the power spectrum of the fluctuations 
of SR

 

(f)

 

with time
1)

 

white (1-β

 

=0)

 

for uncorrelated 
fluctuators

 

(Gaussian)
2) S2

 

(f2

 

, f) ∝

 

1/f2
1-β

 

for interacting   
fluctuators

 

(non-Gaussian)
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Increase of correlations as T → 0 

Noise statistics independent

 

of 
both

 

B and magnetic history



⇒ Charge
 

glass transition Tcg

 

=0

• Noise statistics independent of both B and magnetic history
(unlike conventional spin glasses) ⇒ charge, not spin!

• Onset of hysteretic and memory effects in magnetoresistance:   
Tonset

 

<< Tsg

• Slowing down

 

of the dynamics as T→0

• Increase of correlations

 

as T → 0 

Glass transition at T=0

[I. Raičević

 

et al., PRL101, 177004 (2008)]

(Partial) summary of noise results(Partial) summary of noise results



Scaling of  the second spectraScaling of  the second spectra
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• can

 

distinguish between 
different models:

-

 

droplet approach
-

 

hierarchical, tree-like model

S2

 

decreases with f 
for a fixed f2

 

/f,
consistent with droplet

 

picture
(short-range interactions)

Spatial segregation of holes as a 
result of competing interactions 
on different length scales

Cluster charge glass



Origin of large positive Origin of large positive magnetoresistancemagnetoresistance
 

at low T???at low T???
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Low T positive MR closely related 
to the onset of charge glassiness

0
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different sample, fridge
• Positive

 

MR increases
in magnitude again 
below

 

~1 K. 

• Same sample:
onset of charge
glassiness below ~ 1K

OutOut--ofof--plane MR plane MR --
 

LSCOLSCO

High T –

 

crossover to negative MR

LMR

TMR

T ~ 1K
+ MR
decreases

T ~ 1K
+ MR
decreases

LMR > TMR

The pMR mechanism changes below ~ 1 K:



InIn--plane MR plane MR --
 

LSCOLSCO

Low T
Emergence of low-field

 

positive

 MR at T < 1K

High T – MR negligible
• negative

 

below 10K 
(onset of spin glass order)

• isotropic
• reorientation of weak FM moments

positive MR 
below 1K

positive MR 
below 1K



InIn--plane MR plane MR ––
 

LSCO, low TLSCO, low T

Strong positive

 

MR at low T
(below 0.5 K)

Low-T positive MR coincides with 
the onset of charge glassiness

Positive MR

 

-

 

glassy features:
• History dependence
• Memory
• Hysteresis
In the same regime:
• Noise

 

–

 

glassy dynamics as T → 0

Only positive

 

MR exhibits
hysteresis



OutOut--ofof--plane MR plane MR ––
 

LiLi--LCOLCO

High T
• B || c
-

 

negative -

 

steplike

 

decrease (spin flop)
- strong positive

 

below ~ 12 K 
• B || ab
-

 

negative (∝

 

B2; smooth rotation of  
weak FM moments)

Low T
• B || ab: low-field positive

 

MR 
below 3 K

[Similar to AF (x=0.01) LSCO:
Ando et al., PRL 90, 247003 (2003)]



InIn--plane MR plane MR ––
 

LiLi--LCOLCO

High T –

 

negative MR
• B || c –

 

steplike

 

decrease
• B || ab

 

–

 

B2

 

dependence

Low T
• low-field positive

 

MR

 

below ~ 4K



LiLi--LCO: glassy features in transportLCO: glassy features in transport

History dependent

 

behavior

RFC – RZFC

 

decreases with 
increasing T and vanishes 
at a B-dependent T

• Return point memory

• Memory

 

–

 

the highest applied  
field determines R(B=0)

• Hysteresis

 

only in the region of
(initial) positive MR

• Same as in LSCO



Origin of the positive Origin of the positive magnetoresistancemagnetoresistance

Li-LCO –

 

insulating for all x superconducting fluctuations 
not the origin

Orbital effects not the origin

Must be a spin related effect!!

Reorientation of weak 
ferromagnetic moments leads to

Negative, not positive MR

Remaining possibility:

 

coupling of B

 

to the spins of holes
which populate localized states within Mott-Hubbard gap

 

U

2

2
0

( , ) (0, ) exp( )BR B T R T
B

=

Exponential enhancement

not observed

hole localization length much 
smaller than the magnetic length



Strongly disordered materials with Mott VRH and intraStrongly disordered materials with Mott VRH and intra--state state 
correlationscorrelations

 

(Coulomb repulsion

 

U’

 

between two holes in the 
same disorder-localized

 

state)

U’

U’U’

 

>>T

• Spins of singly occupied states become  
parallel in strong enough B 

Zeeman splitting

 

blocks some hopping 
channels ⇒ positive

 

MR

[Kurobe, Kamimura, J. Phys. Soc. Jpn. 51, 1904 (1982)]

Positive MR in various

 

nonmagnetic, disordered

 

materials 
with strong Coulomb

 

interactions attributed to this effect 

EF

Meir, Europhys. Lett. 33, 471 (1996): Positive MR due to Zeeman splitting
-

 

universal function of B/T log R



Test this prediction:

All data in the regime of positive MR
collapse onto one function of a single

scaling parameter!

• Scaling works for both LSCO and Li-LCO
• It appears that the magnetic background remains inactive

 

in this regime of T  
and B (frozen spins/AF domains; holes that “live”

 

in domain walls –

 

analogous to other
disordered, interacting systems)

same data replotted



Conclusions

Lightly doped La2

 

CuO4

 

: two

 

different transport regimes within the spin glass
phase

1) “High T”

 

< Tsg

 

: -

 

magnetic structure

 

important ⇒ negative MR

2) Low T,

 

T → 0 limit (i.e. T < 1 K in practice):
-

 

glassy

 

charge dynamics (noise); charge cluster glass, Tcg

 

=0
-

 

positive MR

 

with hysteresis and memory
-

 

magnetic structure not important, to leading order
-

 

U’

 

on disorder-localized state important

 

(U’~20 K in LSCO)

As T→0, behavior characteristic of systems that are 
far from any magnetic ordering

Use hysteretic, positive MR

 

as an easy tool

 

for detecting charge glassiness
confined to the domain walls: intrinsic or driven by disorder?



Поповић,

 

Београд

 

‘09

Хвала!
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