Ultra-fast Converging Path Integral Approach for Rotating Ideal Bose Gases*

A. Balaž ${ }^{1}$, I. Vidanović ${ }^{1}$, A. Bogojević ${ }^{1}$, A. Pelster ${ }^{2,3}$

${ }^{1}$ Scientific Computing Laboratory, Institute of Physics Belgrade
Pregrevica 118, 11080 Belgrade, Serbia
http://www.scl.rs/
${ }^{2}$ Fachbereich Physik, Universität Duisburg-Essen
Lotharstrasse 1, 47048 Duisburg, Germany
${ }^{3}$ Institut für Theoretische Physik, Freie Universität Berlin Arnimalee 14, 14195 Berlin, Germany
*Supported by the Serbian-German bilateral research project PI-BEC, Serbian Ministry of Science research project OI141035, and EU CX-CMCS Centre of Excellence grant. $\overline{\bar{E}}$
DPG Spring Meeting, Dresden, 22-27 March 2009

Overview

- Effective actions for path integrals
- Numerical approach to path integrals
- Discretized effective actions
- Effective actions for many-body systems
- Rotating ideal BECs
- Energy eigenvalues and eigenstates
- Calculation of global properties of BECs
- Calculation of density profiles of BECs
- Time-of-flight graphs for BECs
- Numerical results
- Energy eigenvalues and eigenstates
- Global properties of BECs
- Density profiles of BECs
- Time-of-flight graphs for BECs
- Concluding remarks

Path integral formalism

- Continual amplitude $A(\alpha, \beta ; T)$ is obtained in the limit $N \rightarrow \infty$ of the discretized amplitude $A_{N}(\alpha, \beta ; T)$,

$$
A(\alpha, \beta ; T)=\lim _{N \rightarrow \infty} A_{N}(\alpha, \beta ; T)
$$

- Discretized amplitude A_{N} is expressed as a multiple integral of the function $e^{-S_{N}}$, where S_{N} is called discretized action
- For a theory defined by the Lagrangian $L=\frac{1}{2} \dot{q}^{2}+V(q)$, (naive) discretized action is given by

$$
S_{N}=\sum_{n=0}^{N-1}\left(\frac{\delta_{n}^{2}}{2 \epsilon}+\epsilon V\left(\bar{q}_{n}\right)\right)
$$

where $\delta_{n}=q_{n+1}-q_{n}, \bar{q}_{n}=\frac{q_{n+1}+q_{n}}{2}$.
DY1.4: Ultra-fast Converging Path Integral Approach for Rotating Ideal Bose Gases

Discretized effective actions

- Discretized actions can be classified according to the speed of convergence of discretized path integrals to continuum
- It is possible to introduce different discretized actions which contain additional terms compared to the naive action, substantially speeding up the convergence
- We have derived, in a systematic way, an approach for obtaining higher level discretized effective actions for general non-relativistic many body systems
- Discretized effective actions of level p lead to $1 / N^{p}$ convergence of discretized amplitudes to the continuum

Effective actions for many-body systems

- We start from Schrödinger's equation for the amplitude $A\left(q, q^{\prime} ; \epsilon\right)$ for a system of M non-relativistic particles in d spatial dimensions

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial \epsilon}-\frac{1}{2} \sum_{i=1}^{M} \triangle_{i}+V(q)\right] A\left(q, q^{\prime} ; \epsilon\right)=0} \\
& {\left[\frac{\partial}{\partial \epsilon}-\frac{1}{2} \sum_{i=1}^{M} \triangle_{i}^{\prime}+V\left(q^{\prime}\right)\right] A\left(q, q^{\prime} ; \epsilon\right)=0}
\end{aligned}
$$

- Here \triangle_{i} and \triangle_{i}^{\prime} are d-dimensional Laplacians over initial and final coordinates of the particle i, while q and q^{\prime} are $d \times M$ dimensional vectors representing positions of all particles at the initial and final time.

Equation for the ideal effective potential

- If we express short-time amplitude $A\left(q, q^{\prime} ; \epsilon\right)$ by the ideal discretized effective potential W

$$
A\left(q, q^{\prime} ; \epsilon\right)=\frac{1}{(2 \pi \epsilon)^{d M / 2}} \exp \left[-\frac{\delta^{2}}{2 \epsilon}-\epsilon W\right]
$$

we obtain equation for the effective potential in terms of $x=\delta / 2, \bar{x}=\left(q+q^{\prime}\right) / 2, V_{ \pm}=V(\bar{x} \pm x)$

$$
\begin{aligned}
W+x \cdot \partial W+\epsilon \frac{\partial W}{\partial \epsilon}-\frac{1}{8} \epsilon \bar{\partial}^{2} W & -\frac{1}{8} \epsilon \partial^{2} W+\frac{1}{8} \epsilon^{2}(\bar{\partial} W)^{2}+ \\
& +\frac{1}{8} \epsilon^{2}(\partial W)^{2}=\frac{V_{+}+V_{-}}{2}
\end{aligned}
$$

Recursive relations

- As before, the effective potential is given as a series

$$
W(x, \bar{x} ; \epsilon)=\sum_{m=0}^{\infty} \sum_{k=0}^{m} W_{m, k}(x, \bar{x}) \epsilon^{m-k}
$$

where

$$
W_{m, k}(x, \bar{x})=x_{i_{1}} x_{i_{2}} \cdots x_{i_{2 k}} c_{m, k}^{i_{1}, \ldots, i_{2 k}}(\bar{x})
$$

- Coefficients $W_{m, k}$ are obtained from recursive relations

$$
\begin{aligned}
8(m+k+1) & W_{m, k}=\bar{\partial}^{2} W_{m-1, k}+\partial^{2} W_{m, k+1}- \\
& -\sum_{l=0}^{m-2} \sum_{r}\left(\bar{\partial} W_{l, r}\right) \cdot\left(\bar{\partial} W_{m-l-2, k-r}\right)- \\
& -\sum_{l=1}^{m-2} \sum_{r}\left(\partial W_{l, r}\right) \cdot\left(\partial W_{m-l-1, k-r+1}\right)
\end{aligned}
$$

Rotating ideal Bose gases (1)

- Weakly-interacting dilute gases
- Bose-Einstein condensates usually realized in harmonic magneto-optical traps
- Fast-rotating Bose-Einstein condensates - one of the hallmarks of a superfluid is its response to rotation
- Paris group (J. Dalibard) has recently realized critically rotating BEC of $3 \cdot 10^{5}$ atoms of ${ }^{87} \mathrm{Rb}$ in an axially symmetric trap - we model this experiment
- The small quartic anharmonicity in $x-y$ plane was used to keep the condensate trapped even at the critical rotation frequency [PRL 92, 050403 (2004)]

Rotating ideal Bose gases（2）

－We apply the developed discretized effective approach to the study of properties of such（fast－rotating）
Bose－Einstein condensates
－We calculate large number of energy eigenvalues and eigenvectors of one－particle states
－We numerically study global properties of the condensate
－T_{c} as a function of rotation frequency Ω
－ground state occupancy N_{0} / N as a function of temperature
－We calculate density profiles of the condensate and time－of－flight absorption graphs
－$V_{B E C}=\frac{M}{2}\left(\omega_{\perp}^{2}-\Omega^{2}\right) r_{\perp}^{2}+\frac{M}{2} \omega_{z}^{2} z^{2}+\frac{k}{4} r_{\perp}^{4}, \omega_{\perp}=2 \pi \times 64.8$ $\mathrm{Hz}, \omega_{z}=2 \pi \times 11.0 \mathrm{~Hz}, k=2.6 \times 10^{-11} \mathrm{Jm}^{-4}$

Rotating ideal Bose gases (3)

- Within the grand-canonical ensemble, the partition function of the ideal Bose gas is

$$
\mathcal{Z}=\sum_{\nu} e^{-\beta\left(E_{\nu}-\mu N_{\nu}\right)}=\prod_{k} \frac{1}{1-e^{-\beta\left(E_{k}-\mu\right)}}
$$

The free energy is given by

$$
\mathcal{F}=-\frac{1}{\beta} \ln \mathcal{Z}=\frac{1}{\beta} \sum_{k} \ln \left(1-e^{-\beta\left(E_{k}-\mu\right)}\right)=-\frac{1}{\beta} \sum_{m=1}^{\infty} \frac{e^{m \beta \mu}}{m} \mathcal{Z}_{1}(m \beta)
$$

where $\mathcal{Z}_{1}(m \beta)$ is a single-particle partition function

- The number of particles is given as

$$
N=-\frac{\partial \mathcal{F}}{\partial \mu}=\sum_{m=1}^{\infty}\left(e^{m \beta \mu} \mathcal{Z}_{1}(m \beta)-1\right)
$$

Rotating ideal Bose gases（4）

－The usual approach to BEC is to treat the ground state separately，and fix μ below the condensation temperature $\mu=E_{0}$
－Below the condensation temperature we have

$$
N=N_{0}+\sum_{m=1}^{\infty}\left(e^{m \beta E_{0}} \mathcal{Z}_{1}(m \beta)-1\right)
$$

－The condensation temperature T_{c} is thus defined by the condition：

$$
\frac{N_{0}}{N}=1-\frac{1}{N} \sum_{m=1}^{\infty}\left(e^{m \beta_{c} E_{0}} \mathcal{Z}_{1}\left(m \beta_{c}\right)-1\right)=0
$$

Energy eigenvalues and eigenstates

- Single-particle eigenvalues and eigenstates are sufficient for the calculation of BEC condensation temperature
- The most efficient approach for low-dimensional systems is direct diagonalization of space-discretized propagator $e^{-\epsilon \hat{H}}$, where ϵ is appropriately chosen artificial short-time of propagation (no time-slices approximation)
- On a given space grid, matrix elements of the propagator are just short-time aplitudes
- If ϵ is chosen so that $\epsilon<1$, such amplitudes can be directly (analytically) calculated using previously derived effective actions with the high convergence level p
- The obtained eigenvalues are $e^{-\epsilon E_{n}}$, and the obtained eigenvectors are space-discretized eigenvectors ψ_{n}

DY1.4: Ultra-fast Converging Path Integral Approach for Rotating Ideal Bose Gases

Details on the calculation of global properties of BECs

- E_{n} can be obtained by the direct diagonalization of the space-discretized propagator, and single-particle partition functions $\mathcal{Z}_{1}(m \beta)$ can be the calculated as

$$
\mathcal{Z}_{1}(m \beta)=\sum_{n} e^{-m \beta E_{n}}
$$

- This is suitable for low temperatures, when higher energy levels (not accessible in the diagonalziation) are negligibe
- For mid-range temperatures, \mathcal{Z}_{1} can be numerically calculated as a sum of diagonal amplitudes, and then E_{0} may be extracted from the free energy

DY1.4: Ultra-fast Converging Path Integral Approach for Rotating Ideal Bose Gases

Density profiles of Bose-Einstein condensates (1)

- Density profile is given in terms of the two-point propagator $\rho\left(\vec{r}_{1}, \vec{r}_{2}\right)=\left\langle\hat{\Psi}^{\dagger}\left(\vec{r}_{1}\right) \hat{\Psi}\left(\vec{r}_{2}\right)\right\rangle$ as a diagonal element, $n(\vec{r})=\rho(\vec{r}, \vec{r})$
- For the ideal Bose gas, the density profile can be written as

$$
n(\vec{r})=N_{0}\left|\psi_{0}(\vec{r})\right|^{2}+\sum_{n \geq 1} N_{n}\left|\psi_{n}(\vec{r})\right|^{2}
$$

where the second term represents thermal density profile

- Vectors ψ_{n} represent single-particle eigenstates, while occupancies N_{n} are given by the Bose-Einstein distribution for $n \geq 1$,

$$
N_{n}=\frac{1}{e^{\beta\left(E_{n}-E_{0}\right)}-1}
$$

Density profiles of Bose-Einstein condensates (2)

- Using the cumulant expansion of occupancies and spectral decomposition of amplitudes, the density profile can be also written as

$$
n(\vec{r})=N_{0}\left|\psi_{0}(\vec{r})\right|^{2}+\sum_{m \geq 1}\left[e^{m \beta E_{0}} A(\vec{r}, 0 ; \vec{r}, m \beta \hbar)-\left|\psi_{0}(\vec{r})\right|^{2}\right]
$$

where $A(\vec{r}, 0 ; \vec{r}, m \beta \hbar)$ represents the (imaginary-time) amplitude for one-particle transition from the position \vec{r} in $t=0$ to the position \vec{r} in $t=m \beta \hbar$

- Both definitions are mathematically equivalent
- The first one is more suitable for low temperatures, while the second one is suitable for mid-range temperatures

Time－of－flight graphs for BECs（1）

－In typical BEC experiments，a trapping potential is switched off and gas is allowed to expand freely during a short time of flight t（of the order of 10 s of ms）
－The absorption picture is then taken，and it maps the density profile to the plane perpendicular to the laser beam
－For the ideal Bose condensate，the density profile after time t is given by

$$
n(\vec{r}, t)=N_{0}\left|\psi_{0}(\vec{r}, t)\right|^{2}+\sum_{n \geq 1} N_{n}\left|\psi_{n}(\vec{r}, t)\right|^{2}
$$

where

$$
\psi_{n}(\vec{r}, t)=\int \frac{\mathrm{d}^{3} \vec{k} \mathrm{~d}^{3} \vec{R}}{(2 \pi)^{3}} e^{-i \omega_{\vec{k}} t+i \vec{k} \cdot \vec{r}-i \vec{k} \cdot \vec{R}} \psi_{n}(\vec{R})
$$

DY1．4：Ultra－fast Converging Path Integral Approach for Rotating Ideal Bose Gases

ScIENTIFIC CロMPபTING LABロRATロRY

Time－of－flight graphs for BECs（2）

－For mid－range temperatures we can use mathematically equivalent definition of the density profile

$$
\begin{aligned}
& n(\vec{r}, t)=N_{0}\left|\psi_{0}(\vec{r}, t)\right|^{2}+\sum_{m \geq 1}\left[e^{m \beta E_{0}} \int \frac{\mathrm{~d}^{3} \vec{k}_{1} \mathrm{~d}^{3} \vec{k}_{2} \mathrm{~d}^{3} \vec{R}_{1} \mathrm{~d}^{3} \vec{R}_{2}}{(2 \pi)^{6}} \times\right. \\
& \left.e^{-i\left(\omega_{\vec{k}_{1}}-\omega_{\vec{k}_{2}}\right) t+i\left(\vec{k}_{1}-\vec{k}_{2}\right) \cdot \vec{r}-i \vec{k}_{1} \cdot \vec{R}_{1}+i \vec{k}_{2} \cdot \vec{R}_{2}} A\left(\vec{R}_{1}, 0 ; \vec{R}_{2}, m \beta \hbar\right)-\left|\psi_{0}(\vec{r}, t)\right|^{2}\right]
\end{aligned}
$$

－In both approaches it is first necessary to calculate E_{0} and $\psi_{0}(\vec{r})$ using direct diagonalization or some other method
－FFT is ideally suitable for numerical calculations of time－of－flight graphs

ScIENTIFIC CロMPபTINE LABロRATロRY

Energy eigenvalues and eigenstates

Deviations from the exact ground－state energy vs．ϵ for $V_{B E C}$ （critical rotation）．The error is proportional to ϵ^{p} ．The red curve is the discretization error（analytically known）．

DY1．4：Ultra－fast Converging Path Integral Approach for Rotating Ideal Bose Gases

Calculation of the condensation temperature

Number of particles as a function of $T_{c}[\mathrm{nK}]$ for different rotation frequencies, obtained with $p=18$ effective action.

SCIENTIFIC CロMPபTINE LABロRATロRY

Calculation of the ground－state occupancy

Ground－state occupancy N_{0} / N as a function of T / T_{c}^{0} for different rotation frequencies，obtained with $p=18$ effective action（ $T_{c}^{0}=110 \mathrm{nK}$ used as a typical scale in all cases）．

DY1．4：Ultra－fast Converging Path Integral Approach for Rotating Ideal Bose Gases

ScIENTIFIC CロMPபTINE LABロRATロRY

Density profiles of Bose－Einstein condensates（1）

$$
\mathrm{t}=0 \mathrm{~ms}
$$

Density profile in $x-y$ plane for the condensate at under－critical rotation $\Omega / \omega_{\perp}=0.9, T=10 \mathrm{nK}<T_{c}=76.8 \mathrm{nK}$ ． The linear size of the profile is $54 \mu \mathrm{~m}$ ．

ScIENTIFIC CロMPபTINE LABロRATロRY

Density profiles of Bose－Einstein condensates（2）

$$
\mathrm{t}=0 \mathrm{~ms}
$$

Density profile in $x-y$ plane for the condensate at critical rotation $\Omega / \omega_{\perp}=1, T=10 \mathrm{nK}<T_{c}=63.3 \mathrm{nK}$ ．The linear size of the profile is $54 \mu \mathrm{~m}$ ．

ScIENTIFIC CロMPபTINE LABロRATロRY

Density profiles of Bose－Einstein condensates（3）

$$
\mathrm{t}=0 \mathrm{~ms}
$$

Density profile in $x-y$ plane for the condensate at over－critical rotation $\Omega / \omega_{\perp}=1.05, T=10 \mathrm{nK}<T_{c}=55.3 \mathrm{nK}$ ．The linear size of the profile is $54 \mu \mathrm{~m}$ ．

DY1．4：Ultra－fast Converging Path Integral Approach for Rotating Ideal Bose Gases

ScIENTIFIC CロMPபTINE LABロRATロRY

Density profiles of Bose－Einstein condensates（4）

$$
\mathrm{t}=0 \mathrm{~ms}
$$

Density profile in $x-y$ plane for the condensate at over－critical rotation $\Omega / \omega_{\perp}=1.2, T=10 \mathrm{nK}<T_{c}=49.1 \mathrm{nK}$ ．The linear size of the profile is $108 \mu \mathrm{~m}$ ．

Time-of-flight graphs for BECs (1)

Evolution of the $x-y$ density profile with the time-of-flight for the condensate at under-critical rotation $\Omega / \omega_{\perp}=0.9, T=10$ $\mathrm{nK}<T_{c}=76.8 \mathrm{nK}$. The linear size of the profile is $54 \mu \mathrm{~m}$.

Time-of-flight graphs for BECs (2)

Evolution of the $x-y$ density profile with the time-of-flight for the condensate at critical rotation $\Omega / \omega_{\perp}=1, T=10 \mathrm{nK}$ $<T_{c}=63.3 \mathrm{nK}$. The linear size of the profile is $54 \mu \mathrm{~m}$.

Time-of-flight graphs for BECs (3)

Evolution of the $x-y$ density profile with the time-of-flight for the condensate at over-critical rotation $\Omega / \omega_{\perp}=1.05, T=10$ $\mathrm{nK}<T_{c}=55.3 \mathrm{nK}$. The linear size of the profile is $54 \mu \mathrm{~m}$.

Time-of-flight graphs for BECs (4)

Evolution of the $x-y$ density profile with the time-of-flight for the condensate at over-critical rotation $\Omega / \omega_{\perp}=1.2, T=10 \mathrm{nK}$ $<T_{c}=49.1 \mathrm{nK}$. The linear size of the profile is $108 \mu \mathrm{~m}$.

Time evolution of the density at the origin

Time evolution [s] of the condensate density at the origin of $x-y$ plane for the condensate at various rotation frequencies $\left(r=\Omega / \omega_{\perp}\right)$ for $T=10 \mathrm{nK}<T_{c}$.

DY1.4: Ultra-fast Converging Path Integral Approach for Rotating Ideal Bose Gases

Conclusions

- A new method for numerical calculation of path integrals applied to the study of ideal Bose gases
- High-order discretized effective actions used for efficient numerical calculation of global and local properties of fast-rotating BECs
- Single-particle eigenvalues and eigenstates
- Condensation temperature and ground-state occupancy
- Density profiles
- Time-of-flight graphs
- Overcritical rotation substantially increases time scale for free expansion after trapping potential is switched off

Further applications

- Ground states of low-dimensional quantum systems
- Properties of interacting BECs
- Gross-Pitaevskii equation
- Effective actions for time-dependent potentials
- Properties of rotating Fermionic gases
- Related applications: Quantum gases with disorder (Anderson localization)

References

- A. Bogojević, A. Balaž, A. Belić, PRL 94, 180403 (2005)
- A. Bogojević, A. Balaž, A. Belić, PLA 344, 84 (2005)
- A. Bogojević, A. Balaž, A. Belić, PRB 72, 064302 (2005)
- A. Bogojević, A. Balaž, A. Belić, PRE 72, 036128 (2005)
- D. Stojiljković, A. Bogojević, A. Balaž, PLA 360, 205 (2006)
- J. Grujić, A. Bogojević, A. Balaž, PLA 360, 217 (2006)
- A. Bogojević, I. Vidanović, A. Balaž, A. Belić, PLA 372, 3341 (2008)
- A. Balaž, A. Bogojević, I. Vidanović, A. Pelster, PRE 79, 036701 (2009)

