

Ultra-fast Converging Path Integral Approach for Rotating Ideal Bose Gases^{*}

A. Balaž¹, I. Vidanović¹, A. Bogojević¹, A. Pelster^{2,3}

¹Scientific Computing Laboratory, Institute of Physics Belgrade Pregrevica 118, 11080 Belgrade, Serbia http://www.scl.rs/

> ²Fachbereich Physik, Universität Duisburg-Essen Lotharstrasse 1, 47048 Duisburg, Germany

³Institut für Theoretische Physik, Freie Universität Berlin Arnimalee 14, 14195 Berlin, Germany

*Supported by the Serbian-German bilateral research project PI-BEC, Serbian Ministry of Science research project OI141035, and EU CX-CMCS Centre of Excellence grant.

DPG Spring Meeting, Dresden, 22-27 March 2009

Overview

- Effective actions for path integrals
 - Numerical approach to path integrals
 - Discretized effective actions
 - Effective actions for many-body systems
- Rotating ideal BECs
 - Energy eigenvalues and eigenstates
 - Calculation of global properties of BECs
 - Calculation of density profiles of BECs
 - Time-of-flight graphs for BECs
- Numerical results
 - Energy eigenvalues and eigenstates
 - Global properties of BECs
 - Density profiles of BECs
 - Time-of-flight graphs for BECs
- Concluding remarks

4 3 b

Numerical approach to path integrals Discretized effective actions Effective actions for many-body systems

Path integral formalism

• Continual amplitude $A(\alpha, \beta; T)$ is obtained in the limit $N \to \infty$ of the discretized amplitude $A_N(\alpha, \beta; T)$,

$$A(\alpha,\beta;T) = \lim_{N \to \infty} A_N(\alpha,\beta;T)$$

- Discretized amplitude A_N is expressed as a multiple integral of the function e^{-S_N} , where S_N is called discretized action
- For a theory defined by the Lagrangian $L = \frac{1}{2} \dot{q}^2 + V(q)$, (naive) discretized action is given by

$$S_N = \sum_{n=0}^{N-1} \left(\frac{\delta_n^2}{2\epsilon} + \epsilon V(\bar{q}_n) \right) \,,$$

where $\delta_n = q_{n+1} - q_n$, $\bar{q}_n = \frac{q_{n+1} + q_n}{2}$.

Numerical approach to path integrals **Discretized effective actions** Effective actions for many-body systems

イロト イポト イラト イラ

Discretized effective actions

- Discretized actions can be classified according to the speed of convergence of discretized path integrals to continuum
- It is possible to introduce different discretized actions which contain additional terms compared to the naive action, substantially speeding up the convergence
- We have derived, in a systematic way, an approach for obtaining higher level discretized effective actions for general non-relativistic many body systems
- Discretized effective actions of level p lead to $1/N^p$ convergence of discretized amplitudes to the continuum

Numerical approach to path integrals Discretized effective actions Effective actions for many-body systems

Effective actions for many-body systems

• We start from Schrödinger's equation for the amplitude $A(q,q';\epsilon)$ for a system of M non-relativistic particles in d spatial dimensions

$$\begin{bmatrix} \frac{\partial}{\partial \epsilon} - \frac{1}{2} \sum_{i=1}^{M} \triangle_{i} + V(q) \end{bmatrix} A(q, q'; \epsilon) = 0$$
$$\begin{bmatrix} \frac{\partial}{\partial \epsilon} - \frac{1}{2} \sum_{i=1}^{M} \triangle'_{i} + V(q') \end{bmatrix} A(q, q'; \epsilon) = 0$$

Here △_i and △'_i are d-dimensional Laplacians over initial and final coordinates of the particle i, while q and q' are d × M dimensional vectors representing positions of all particles at the initial and final time.

Numerical approach to path integrals Discretized effective actions Effective actions for many-body systems

.

Equation for the ideal effective potential

If we express short-time amplitude A(q, q'; ε) by the ideal discretized effective potential W

$$A(q,q';\epsilon) = \frac{1}{(2\pi\epsilon)^{dM/2}} \exp\left[-\frac{\delta^2}{2\epsilon} - \epsilon W\right]$$

we obtain equation for the effective potential in terms of $x = \delta/2$, $\bar{x} = (q + q')/2$, $V_{\pm} = V(\bar{x} \pm x)$

$$W + x \cdot \partial W + \epsilon \frac{\partial W}{\partial \epsilon} - \frac{1}{8} \epsilon \bar{\partial}^2 W - \frac{1}{8} \epsilon \partial^2 W + \frac{1}{8} \epsilon^2 (\bar{\partial}W)^2 + \frac{1}{8} \epsilon^2 (\partial W)^2 = \frac{V_+ + V_-}{2}$$

Numerical approach to path integrals Discretized effective actions Effective actions for many-body systems

Recursive relations

• As before, the effective potential is given as a series

$$W(x,\bar{x};\epsilon) = \sum_{m=0}^{\infty} \sum_{k=0}^{m} W_{m,k}(x,\bar{x}) \,\epsilon^{m-k}$$

where

$$W_{m,k}(x,\bar{x}) = x_{i_1}x_{i_2}\cdots x_{i_{2k}}c_{m,k}^{i_1,\dots,i_{2k}}(\bar{x})$$

• Coefficients $W_{m,k}$ are obtained from recursive relations

$$8 (m + k + 1) W_{m,k} = \bar{\partial}^2 W_{m-1,k} + \partial^2 W_{m,k+1} - \sum_{l=0}^{m-2} \sum_r (\bar{\partial} W_{l,r}) \cdot (\bar{\partial} W_{m-l-2,k-r}) - \sum_{l=1}^{m-2} \sum_r (\partial W_{l,r}) \cdot (\partial W_{m-l-1,k-r+1})$$

Energy eigenvalues and eigenstates Calculation of density profiles of BECs Time-of-flight graphs for BECs

イロト イボト イヨト イヨト

Rotating ideal Bose gases (1)

- Weakly-interacting dilute gases
- Bose-Einstein condensates usually realized in harmonic magneto-optical traps
- Fast-rotating Bose-Einstein condensates one of the hallmarks of a superfluid is its response to rotation
- Paris group (J. Dalibard) has recently realized critically rotating BEC of $3 \cdot 10^5$ atoms of ⁸⁷Rb in an axially symmetric trap we model this experiment
- The small quartic anharmonicity in x y plane was used to keep the condensate trapped even at the critical rotation frequency [PRL **92**, 050403 (2004)]

Energy eigenvalues and eigenstates Calculation of density profiles of BECs Time-of-flight graphs for BECs

イロト イボト イヨト イヨト

Rotating ideal Bose gases (2)

- We apply the developed discretized effective approach to the study of properties of such (fast-rotating) Bose-Einstein condensates
- We calculate large number of energy eigenvalues and eigenvectors of one-particle states
- We numerically study global properties of the condensate
 - T_c as a function of rotation frequency Ω
 - ground state occupancy N_0/N as a function of temperature
- We calculate density profiles of the condensate and time-of-flight absorption graphs
- $V_{BEC} = \frac{M}{2} (\omega_{\perp}^2 \Omega^2) r_{\perp}^2 + \frac{M}{2} \omega_z^2 z^2 + \frac{k}{4} r_{\perp}^4, \ \omega_{\perp} = 2\pi \times 64.8$ Hz, $\omega_z = 2\pi \times 11.0$ Hz, $k = 2.6 \times 10^{-11}$ Jm⁻⁴

Energy eigenvalues and eigenstates Calculation of density profiles of BECs Time-of-flight graphs for BECs

Rotating ideal Bose gases (3)

• Within the grand-canonical ensemble, the partition function of the ideal Bose gas is

$$\mathcal{Z} = \sum_{\nu} e^{-\beta(E_{\nu} - \mu N_{\nu})} = \prod_{k} \frac{1}{1 - e^{-\beta(E_{k} - \mu)}}$$

The free energy is given by

$$\mathcal{F} = -\frac{1}{\beta} \ln \mathcal{Z} = \frac{1}{\beta} \sum_{k} \ln(1 - e^{-\beta(E_k - \mu)}) = -\frac{1}{\beta} \sum_{m=1}^{\infty} \frac{e^{m\beta\mu}}{m} \mathcal{Z}_1(m\beta)$$

where $\mathcal{Z}_1(m\beta)$ is a single-particle partition function

• The number of particles is given as

$$N = -\frac{\partial \mathcal{F}}{\partial \mu} = \sum_{m=1}^{\infty} (e^{m\beta\mu} \mathcal{Z}_1(m\beta) - 1)$$

Energy eigenvalues and eigenstates Calculation of density profiles of BECs Time-of-flight graphs for BECs

・ ロ ト ・ 何 ト ・ 日 ト ・ 日 日

Rotating ideal Bose gases (4)

- The usual approach to BEC is to treat the ground state separately, and fix μ below the condensation temperature $\mu = E_0$
- Below the condensation temperature we have

$$N = N_0 + \sum_{m=1}^{\infty} (e^{m\beta E_0} \mathcal{Z}_1(m\beta) - 1)$$

• The condensation temperature T_c is thus defined by the condition:

$$\frac{N_0}{N} = 1 - \frac{1}{N} \sum_{m=1}^{\infty} (e^{m\beta_c E_0} \mathcal{Z}_1(m\beta_c) - 1) = 0$$

Energy eigenvalues and eigenstates Calculation of density profiles of BECs Time-of-flight graphs for BECs

Energy eigenvalues and eigenstates

- Single-particle eigenvalues and eigenstates are sufficient for the calculation of BEC condensation temperature
- The most efficient approach for low-dimensional systems is direct diagonalization of space-discretized propagator $e^{-\epsilon \hat{H}}$, where ϵ is appropriately chosen artificial short-time of propagation (no time-slices approximation)
- On a given space grid, matrix elements of the propagator are just short-time aplitudes
- If ϵ is chosen so that $\epsilon < 1$, such amplitudes can be directly (analytically) calculated using previously derived effective actions with the high convergence level p
- The obtained eigenvalues are $e^{-\epsilon E_n}$, and the obtained eigenvectors are space-discretized eigenvectors ψ_n

Energy eigenvalues and eigenstates Calculation of density profiles of BECs Time-of-flight graphs for BECs

イロト イボト イヨト イヨト

Details on the calculation of global properties of BECs

• E_n can be obtained by the direct diagonalization of the space-discretized propagator, and single-particle partition functions $\mathcal{Z}_1(m\beta)$ can be the calculated as

$$\mathcal{Z}_1(m\beta) = \sum_n e^{-m\beta E_n}$$

- This is suitable for low temperatures, when higher energy levels (not accessible in the diagonalziation) are negligibe
- For mid-range temperatures, Z_1 can be numerically calculated as a sum of diagonal amplitudes, and then E_0 may be extracted from the free energy

Energy eigenvalues and eigenstates Calculation of density profiles of BECs Time-of-flight graphs for BECs

Density profiles of Bose-Einstein condensates (1)

- Density profile is given in terms of the two-point propagator $\rho(\vec{r_1}, \vec{r_2}) = \langle \hat{\Psi}^{\dagger}(\vec{r_1}) \hat{\Psi}(\vec{r_2}) \rangle$ as a diagonal element, $n(\vec{r}) = \rho(\vec{r}, \vec{r})$
- For the ideal Bose gas, the density profile can be written as

$$n(\vec{r}) = N_0 |\psi_0(\vec{r})|^2 + \sum_{n \ge 1} N_n |\psi_n(\vec{r})|^2$$

where the second term represents thermal density profile

• Vectors ψ_n represent single-particle eigenstates, while occupancies N_n are given by the Bose-Einstein distribution for $n \ge 1$,

$$N_n = \frac{1}{e^{\beta(E_n - E_0)} - 1}$$

Energy eigenvalues and eigenstates Calculation of density profiles of BECs Time-of-flight graphs for BECs

・ロト ・ 同ト ・ ヨト ・ ヨト

Density profiles of Bose-Einstein condensates (2)

• Using the cumulant expansion of occupancies and spectral decomposition of amplitudes, the density profile can be also written as

$$n(\vec{r}) = N_0 |\psi_0(\vec{r})|^2 + \sum_{m \ge 1} \left[e^{m\beta E_0} A(\vec{r}, 0; \vec{r}, m\beta\hbar) - |\psi_0(\vec{r})|^2 \right]$$

where $A(\vec{r}, 0; \vec{r}, m\beta\hbar)$ represents the (imaginary-time) amplitude for one-particle transition from the position \vec{r} in t = 0 to the position \vec{r} in $t = m\beta\hbar$

- Both definitions are mathematically equivalent
- The first one is more suitable for low temperatures, while the second one is suitable for mid-range temperatures

Energy eigenvalues and eigenstates Calculation of density profiles of BECs Time-of-flight graphs for BECs

Time-of-flight graphs for BECs (1)

- In typical BEC experiments, a trapping potential is switched off and gas is allowed to expand freely during a short time of flight t (of the order of 10s of ms)
- The absorption picture is then taken, and it maps the density profile to the plane perpendicular to the laser beam
- For the ideal Bose condensate, the density profile after time t is given by

$$n(\vec{r},t) = N_0 |\psi_0(\vec{r},t)|^2 + \sum_{n \ge 1} N_n |\psi_n(\vec{r},t)|^2$$

where

$$\psi_n(\vec{r},t) = \int \frac{\mathrm{d}^3 \vec{k} \, \mathrm{d}^3 \vec{R}}{(2\pi)^3} \, e^{-i\omega_{\vec{k}} t + i\vec{k} \cdot \vec{r} - i\vec{k} \cdot \vec{R}} \, \psi_n(\vec{R})$$

Energy eigenvalues and eigenstates Calculation of density profiles of BECs Time-of-flight graphs for BECs

イロト イポト イラト イラト

Time-of-flight graphs for BECs (2)

• For mid-range temperatures we can use mathematically equivalent definition of the density profile

$$n(\vec{r},t) = N_0 |\psi_0(\vec{r},t)|^2 + \sum_{m \ge 1} \left[e^{m\beta E_0} \int \frac{\mathrm{d}^3 \vec{k}_1 \,\mathrm{d}^3 \vec{k}_2 \,\mathrm{d}^3 \vec{R}_1 \,\mathrm{d}^3 \vec{R}_2}{(2\pi)^6} \times e^{-i(\omega_{\vec{k}_1} - \omega_{\vec{k}_2})t + i(\vec{k}_1 - \vec{k}_2) \cdot \vec{r} - i\vec{k}_1 \cdot \vec{R}_1 + i\vec{k}_2 \cdot \vec{R}_2} A(\vec{R}_1,0;\vec{R}_2,m\beta\hbar) - |\psi_0(\vec{r},t)|^2 \right]$$

- In both approaches it is first necessary to calculate E_0 and $\psi_0(\vec{r})$ using direct diagonalization or some other method
- FFT is ideally suitable for numerical calculations of time-of-flight graphs

Energy eigenvalues and eigenstates Calculation of global properties of BECs Calculation of density profiles of BECs Time-of-flight graphs for BECs

Energy eigenvalues and eigenstates

Deviations from the exact ground-state energy vs. ϵ for V_{BEC} (critical rotation). The error is proportional to ϵ^p . The red curve is the discretization error (analytically known).

Energy eigenvalues and eigenstates Calculation of global properties of BECs Calculation of density profiles of BECs Time-of-flight graphs for BECs

Calculation of the condensation temperature

Number of particles as a function of T_c [nK] for different rotation frequencies, obtained with p = 18 effective action.

Energy eigenvalues and eigenstates Calculation of global properties of BECs Calculation of density profiles of BECs Time-of-flight graphs for BECs

Calculation of the ground-state occupancy

Ground-state occupancy N_0/N as a function of T/T_c^0 for different rotation frequencies, obtained with p = 18 effective action ($T_c^0 = 110$ nK used as a typical scale in all cases).

Energy eigenvalues and eigenstates Calculation of global properties of BECs Calculation of density profiles of BECs Time-of-flight graphs for BECs

t = 0 ms —

Density profiles of Bose-Einstein condensates (1)

Density profile in x - y plane for the condensate at under-critical rotation $\Omega/\omega_{\perp} = 0.9$, T = 10 nK $< T_c = 76.8$ nK. The linear size of the profile is 54 μ m.

Energy eigenvalues and eigenstates Calculation of global properties of BECs Calculation of density profiles of BECs Time-of-flight graphs for BECs

t = 0 ms —

Density profiles of Bose-Einstein condensates (2)

Density profile in x - y plane for the condensate at critical rotation $\Omega/\omega_{\perp} = 1$, T = 10 nK $< T_c = 63.3$ nK. The linear size of the profile is 54 μ m.

Energy eigenvalues and eigenstates Calculation of global properties of BECs Calculation of density profiles of BECs Time-of-flight graphs for BECs

t = 0 ms —

Density profiles of Bose-Einstein condensates (3)

Density profile in x - y plane for the condensate at over-critical rotation $\Omega/\omega_{\perp} = 1.05$, T = 10 nK $< T_c = 55.3$ nK. The linear size of the profile is 54 μ m.

Energy eigenvalues and eigenstates Calculation of global properties of BECs Calculation of density profiles of BECs Time-of-flight graphs for BECs

t=0 ms ---

Density profiles of Bose-Einstein condensates (4)

Density profile in x - y plane for the condensate at over-critical rotation $\Omega/\omega_{\perp} = 1.2, T = 10 \text{ nK} < T_c = 49.1 \text{ nK}$. The linear size of the profile is 108 μ m.

Energy eigenvalues and eigenstates Calculation of global properties of BECs Calculation of density profiles of BECs **Time-of-flight graphs for BECs**

Time-of-flight graphs for BECs (1)

(Loading diag-d025-L400-r09eps02beta0311.mpg)

Evolution of the x - y density profile with the time-of-flight for the condensate at under-critical rotation $\Omega/\omega_{\perp} = 0.9$, T = 10nK < $T_c = 76.8$ nK. The linear size of the profile is 54 μ m.

Energy eigenvalues and eigenstates Calculation of global properties of BECs Calculation of density profiles of BECs **Time-of-flight graphs for BECs**

Time-of-flight graphs for BECs (2)

(Loading diag-d025-L400-r10eps02beta0311.mpg)

Evolution of the x - y density profile with the time-of-flight for the condensate at critical rotation $\Omega/\omega_{\perp} = 1$, T = 10 nK $< T_c = 63.3$ nK. The linear size of the profile is 54 μ m.

Energy eigenvalues and eigenstates Calculation of global properties of BECs Calculation of density profiles of BECs **Time-of-flight graphs for BECs**

Time-of-flight graphs for BECs (3)

(Loading diag-d025-L400-r105eps02beta0311.mpg)

Evolution of the x - y density profile with the time-of-flight for the condensate at over-critical rotation $\Omega/\omega_{\perp} = 1.05$, T = 10nK $< T_c = 55.3$ nK. The linear size of the profile is 54 μ m.

Energy eigenvalues and eigenstates Calculation of global properties of BECs Calculation of density profiles of BECs **Time-of-flight graphs for BECs**

Time-of-flight graphs for BECs (4)

(Loading diag-d05-L400-r12eps02beta0311.mpg)

Evolution of the x - y density profile with the time-of-flight for the condensate at over-critical rotation $\Omega/\omega_{\perp} = 1.2$, T = 10 nK $< T_c = 49.1$ nK. The linear size of the profile is 108 μ m.

Energy eigenvalues and eigenstates Calculation of global properties of BECs Calculation of density profiles of BECs **Time-of-flight graphs for BECs**

Time evolution of the density at the origin

Time evolution [s] of the condensate density at the origin of x - y plane for the condensate at various rotation frequencies $(r = \Omega/\omega_{\perp})$ for T = 10 nK $< T_c$.

Conclusions Further applications References

・ロト ・同ト ・ヨト ・ヨト

Conclusions

- A new method for numerical calculation of path integrals applied to the study of ideal Bose gases
- High-order discretized effective actions used for efficient numerical calculation of global and local properties of fast-rotating BECs
 - Single-particle eigenvalues and eigenstates
 - Condensation temperature and ground-state occupancy
 - Density profiles
 - Time-of-flight graphs
- Overcritical rotation substantially increases time scale for free expansion after trapping potential is switched off

Conclusions Further applications References

マロト イヨト イヨ

Further applications

- Ground states of low-dimensional quantum systems
- Properties of interacting BECs
 - Gross-Pitaevskii equation
 - Effective actions for time-dependent potentials
- Properties of rotating Fermionic gases
- Related applications: Quantum gases with disorder (Anderson localization)

Conclusions Further applications References

イロト イポト イラト イラト

References

- A. Bogojević, A. Balaž, A. Belić, PRL 94, 180403 (2005)
- A. Bogojević, A. Balaž, A. Belić, PLA 344, 84 (2005)
- A. Bogojević, A. Balaž, A. Belić, PRB 72, 064302 (2005)
- A. Bogojević, A. Balaž, A. Belić, PRE 72, 036128 (2005)
- D. Stojiljković, A. Bogojević, A. Balaž, PLA 360, 205 (2006)
- J. Grujić, A. Bogojević, A. Balaž, PLA 360, 217 (2006)
- A. Bogojević, I. Vidanović, A. Balaž, A. Belić, PLA **372**, 3341 (2008)
- A. Balaž, A. Bogojević, I. Vidanović, A. Pelster, PRE 79, 036701 (2009)