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Path integral formalism

Continual amplitude A(α, β;T ) is obtained in the limit
N →∞ of the discretized amplitude AN (α, β;T ),

A(α, β;T ) = lim
N→∞

AN (α, β;T )

Discretized amplitude AN is expressed as a multiple
integral of the function e−SN , where SN is called
discretized action
For a theory defined by the Lagrangian L = 1

2 q̇
2 + V (q),

(naive) discretized action is given by

SN =
N−1∑
n=0

(
δ2
n

2ε
+ εV (q̄n)

)
,

where δn = qn+1 − qn, q̄n = qn+1+qn
2 .
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Discretized effective actions

Discretized actions can be classified according to the speed
of convergence of discretized path integrals to continuum
It is possible to introduce different discretized actions
which contain additional terms compared to the naive
action, substantially speeding up the convergence
We have derived, in a systematic way, an approach for
obtaining higher level discretized effective actions for
general non-relativistic many body systems
Discretized effective actions of level p lead to 1/Np

convergence of discretized amplitudes to the continuum
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Effective actions for many-body systems

We start from Schrödinger’s equation for the amplitude
A(q, q′; ε) for a system of M non-relativistic particles in d
spatial dimensions[

∂

∂ε
− 1

2

M∑
i=1

4i + V (q)

]
A(q, q′; ε) = 0[

∂

∂ε
− 1

2

M∑
i=1

4′i + V (q′)

]
A(q, q′; ε) = 0

Here 4i and 4′i are d-dimensional Laplacians over initial
and final coordinates of the particle i, while q and q′ are
d×M dimensional vectors representing positions of all
particles at the initial and final time.
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Equation for the ideal effective potential

If we express short-time amplitude A(q, q′; ε) by the ideal
discretized effective potential W

A(q, q′; ε) =
1

(2πε)dM/2
exp

[
−δ

2

2ε
− εW

]
we obtain equation for the effective potential in terms of
x = δ/2, x̄ = (q + q′)/2, V± = V (x̄± x)

W + x · ∂ W + ε
∂W

∂ε
− 1

8
ε∂̄2W − 1

8
ε∂2W +

1
8
ε2(∂̄W )2+

+
1
8
ε2(∂W )2 =

V+ + V−
2
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Recursive relations

As before, the effective potential is given as a series

W (x, x̄; ε) =
∞∑
m=0

m∑
k=0

Wm,k(x, x̄) εm−k

where
Wm,k(x, x̄) = xi1xi2 · · ·xi2kc

i1,...,i2k
m,k (x̄)

Coefficients Wm,k are obtained from recursive relations

8 (m+ k + 1)Wm,k = ∂̄2Wm−1,k + ∂2Wm,k+1−

−
m−2∑
l=0

∑
r

(∂̄Wl,r) · (∂̄Wm−l−2,k−r)−

−
m−2∑
l=1

∑
r

(∂Wl,r) · (∂Wm−l−1,k−r+1)
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Rotating ideal Bose gases (1)

Weakly-interacting dilute gases
Bose-Einstein condensates usually realized in harmonic
magneto-optical traps
Fast-rotating Bose-Einstein condensates - one of the
hallmarks of a superfluid is its response to rotation
Paris group (J. Dalibard) has recently realized critically
rotating BEC of 3 · 105 atoms of 87Rb in an axially
symmetric trap - we model this experiment
The small quartic anharmonicity in x− y plane was used to
keep the condensate trapped even at the critical rotation
frequency [PRL 92, 050403 (2004)]
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Rotating ideal Bose gases (2)

We apply the developed discretized effective approach to
the study of properties of such (fast-rotating)
Bose-Einstein condensates
We calculate large number of energy eigenvalues and
eigenvectors of one-particle states
We numerically study global properties of the condensate

Tc as a function of rotation frequency Ω
ground state occupancy N0/N as a function of temperature

We calculate density profiles of the condensate and
time-of-flight absorption graphs
VBEC = M

2 (ω2
⊥ − Ω2)r2

⊥ + M
2 ω

2
zz

2 + k
4r

4
⊥, ω⊥ = 2π × 64.8

Hz, ωz = 2π × 11.0 Hz, k = 2.6× 10−11 Jm−4
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Rotating ideal Bose gases (3)

Within the grand-canonical ensemble, the partition
function of the ideal Bose gas is

Z =
∑
ν

e−β(Eν−µNν) =
∏
k

1
1− e−β(Ek−µ)

The free energy is given by

F = − 1
β

lnZ =
1
β

∑
k

ln(1−e−β(Ek−µ)) = − 1
β

∞∑
m=1

emβµ

m
Z1(mβ)

where Z1(mβ) is a single-particle partition function
The number of particles is given as

N = −∂F
∂µ

=
∞∑
m=1

(emβµZ1(mβ)− 1)
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Rotating ideal Bose gases (4)

The usual approach to BEC is to treat the ground state
separately, and fix µ below the condensation temperature
µ = E0

Below the condensation temperature we have

N = N0 +
∞∑
m=1

(emβE0Z1(mβ)− 1)

The condensation temperature Tc is thus defined by the
condition:

N0

N
= 1− 1

N

∞∑
m=1

(emβcE0Z1(mβc)− 1) = 0
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Energy eigenvalues and eigenstates

Single-particle eigenvalues and eigenstates are sufficient for
the calculation of BEC condensation temperature
The most efficient approach for low-dimensional systems is
direct diagonalization of space-discretized propagator e−εĤ ,
where ε is appropriately chosen artificial short-time of
propagation (no time-slices approximation)
On a given space grid, matrix elements of the propagator
are just short-time aplitudes
If ε is chosen so that ε < 1, such amplitudes can be directly
(analytically) calculated using previously derived effective
actions with the high convergence level p
The obtained eigenvalues are e−εEn , and the obtained
eigenvectors are space-discretized eigenvectors ψn
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Details on the calculation of global properties of
BECs

En can be obtained by the direct diagonalization of the
space-discretized propagator, and single-particle partition
functions Z1(mβ) can be the calculated as

Z1(mβ) =
∑
n

e−mβEn

This is suitable for low temperatures, when higher energy
levels (not accessible in the diagonalziation) are negligibe
For mid-range temperatures, Z1 can be numerically
calculated as a sum of diagonal amplitudes, and then E0

may be extracted from the free energy
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Density profiles of Bose-Einstein condensates (1)

Density profile is given in terms of the two-point
propagator ρ(~r1, ~r2) = 〈Ψ̂†(~r1)Ψ̂(~r2)〉 as a diagonal element,
n(~r) = ρ(~r, ~r)
For the ideal Bose gas, the density profile can be written as

n(~r) = N0|ψ0(~r)|2 +
∑
n≥1

Nn|ψn(~r)|2

where the second term represents thermal density profile
Vectors ψn represent single-particle eigenstates, while
occupancies Nn are given by the Bose-Einstein distribution
for n ≥ 1,

Nn =
1

eβ(En−E0) − 1
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Density profiles of Bose-Einstein condensates (2)

Using the cumulant expansion of occupancies and spectral
decomposition of amplitudes, the density profile can be
also written as

n(~r) = N0|ψ0(~r)|2 +
∑
m≥1

[
emβE0A(~r, 0;~r,mβ~)− |ψ0(~r)|2

]
where A(~r, 0;~r,mβ~) represents the (imaginary-time)
amplitude for one-particle transition from the position ~r in
t = 0 to the position ~r in t = mβ~
Both definitions are mathematically equivalent
The first one is more suitable for low temperatures, while
the second one is suitable for mid-range temperatures
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Time-of-flight graphs for BECs (1)

In typical BEC experiments, a trapping potential is
switched off and gas is allowed to expand freely during a
short time of flight t (of the order of 10s of ms)
The absorption picture is then taken, and it maps the
density profile to the plane perpendicular to the laser beam
For the ideal Bose condensate, the density profile after time
t is given by

n(~r, t) = N0|ψ0(~r, t)|2 +
∑
n≥1

Nn|ψn(~r, t)|2

where

ψn(~r, t) =
∫

d3~k d3 ~R

(2π)3
e−iω~kt+i

~k·~r−i~k·~R ψn(~R)

DPG Spring Meeting, Dresden, 22-27 March 2009DY1.4: Ultra-fast Converging Path Integral Approach for Rotating Ideal Bose Gases



Effective actions for PI
Rotating ideal BECs

Numerical results
Concluding remarks

Energy eigenvalues and eigenstates
Calculation of density profiles of BECs
Time-of-flight graphs for BECs

Time-of-flight graphs for BECs (2)

For mid-range temperatures we can use mathematically
equivalent definition of the density profile

n(~r, t) = N0|ψ0(~r, t)|2 +
∑
m≥1

[
emβE0

∫
d3~k1 d3~k2 d3 ~R1 d3 ~R2

(2π)6
×

e
−i(ω~k1−ω~k2 )t+i(~k1−~k2)·~r−i~k1·~R1+i~k2·~R2 A(~R1, 0; ~R2,mβ~)− |ψ0(~r, t)|2

]
In both approaches it is first necessary to calculate E0 and
ψ0(~r) using direct diagonalization or some other method
FFT is ideally suitable for numerical calculations of
time-of-flight graphs
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Energy eigenvalues and eigenstates
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Deviations from the exact ground-state energy vs. ε for VBEC
(critical rotation). The error is proportional to εp. The red
curve is the discretization error (analytically known).
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Calculation of the condensation temperature
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rotation frequencies, obtained with p = 18 effective action.
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Calculation of the ground-state occupancy
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Density profiles of Bose-Einstein condensates (1)
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Density profile in x− y plane for the condensate at
under-critical rotation Ω/ω⊥ = 0.9, T = 10 nK < Tc = 76.8 nK.
The linear size of the profile is 54 µm.
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Density profiles of Bose-Einstein condensates (2)
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Density profile in x− y plane for the condensate at critical
rotation Ω/ω⊥ = 1, T = 10 nK < Tc = 63.3 nK. The linear size
of the profile is 54 µm.
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Density profiles of Bose-Einstein condensates (3)
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Density profile in x− y plane for the condensate at over-critical
rotation Ω/ω⊥ = 1.05, T = 10 nK < Tc = 55.3 nK. The linear
size of the profile is 54 µm.

DPG Spring Meeting, Dresden, 22-27 March 2009DY1.4: Ultra-fast Converging Path Integral Approach for Rotating Ideal Bose Gases



Effective actions for PI
Rotating ideal BECs

Numerical results
Concluding remarks

Energy eigenvalues and eigenstates
Calculation of global properties of BECs
Calculation of density profiles of BECs
Time-of-flight graphs for BECs

Density profiles of Bose-Einstein condensates (4)
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Density profile in x− y plane for the condensate at over-critical
rotation Ω/ω⊥ = 1.2, T = 10 nK < Tc = 49.1 nK. The linear
size of the profile is 108 µm.
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Time-of-flight graphs for BECs (1)

(Loading diag-d025-L400-r09eps02beta0311.mpg)

Evolution of the x− y density profile with the time-of-flight for
the condensate at under-critical rotation Ω/ω⊥ = 0.9, T = 10
nK < Tc = 76.8 nK. The linear size of the profile is 54 µm.
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Time-of-flight graphs for BECs (2)

(Loading diag-d025-L400-r10eps02beta0311.mpg)

Evolution of the x− y density profile with the time-of-flight for
the condensate at critical rotation Ω/ω⊥ = 1, T = 10 nK
< Tc = 63.3 nK. The linear size of the profile is 54 µm.
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Time-of-flight graphs for BECs (3)

(Loading diag-d025-L400-r105eps02beta0311.mpg)

Evolution of the x− y density profile with the time-of-flight for
the condensate at over-critical rotation Ω/ω⊥ = 1.05, T = 10
nK < Tc = 55.3 nK. The linear size of the profile is 54 µm.
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Time-of-flight graphs for BECs (4)

(Loading diag-d05-L400-r12eps02beta0311.mpg)

Evolution of the x− y density profile with the time-of-flight for
the condensate at over-critical rotation Ω/ω⊥ = 1.2, T = 10 nK
< Tc = 49.1 nK. The linear size of the profile is 108 µm.
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Time evolution of the density at the origin
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Time evolution [s] of the condensate density at the origin of
x− y plane for the condensate at various rotation frequencies
(r = Ω/ω⊥) for T = 10 nK < Tc.
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Conclusions

A new method for numerical calculation of path integrals
applied to the study of ideal Bose gases
High-order discretized effective actions used for efficient
numerical calculation of global and local properties of
fast-rotating BECs

Single-particle eigenvalues and eigenstates
Condensation temperature and ground-state occupancy
Density profiles
Time-of-flight graphs

Overcritical rotation substantially increases time scale for
free expansion after trapping potential is switched off
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Further applications

Ground states of low-dimensional quantum systems
Properties of interacting BECs

Gross-Pitaevskii equation
Effective actions for time-dependent potentials

Properties of rotating Fermionic gases
Related applications: Quantum gases with disorder
(Anderson localization)
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