
N=1 APPROXIMATION

We present a universal approach for a treatment of 
general many-body non-relativistic systems starting 
from the time-dependent Schrödinger equation [4,5]

where the potential V contains all external fields and 
interactions. Inspired by the path-integral formalism, 
its solution in the imaginary time can be written as

where                          and all vectors are      .
dimensional.       

By keeping all corrections up to level            in   the 
sum on the right-hand side of the last equation we 
construct  converging to the continuum as

The exponent of            (mid-point exponent + 
corrections up to level ) is usually called effective 
action of level . In terms of the path-integral 
formalism, we are de facto calculating transition 
amplitudes without the time-slicing procedure, i.e. 
we use        time slices. Therefore we refer to this   
method as          approximation [1].

General properties of transition amplitudes imply:

Now the Schrödinger equation for the amplitude can           
be rewritten in the form of recursive relations for the 
coefficients        . Such relations are most easily 
solved in an automated way using symbolic software 
package Mathematica in conjunction with the 
MathTensor module. For general many-body theory, 
we have obtained closed-form expressions up to 
level         . All the details of the method can be 
found in Refs. [4-6], and we present here the 
solution up to level          .

EXAMPLE: p=4 ACTION

ENERGY SPECTRA

In the path-integral formalism we usually extract 
low-lying energy levels of the system from the        .
limit according to:

Instead, we want to use finite t information, i.e.     
closed-form analytic expressions            to obtain 
energy spectra. One way to do this is to solve the 
eigenproblem of the space-discretized matrix

whose eigenvalues tend to        and 
eigenfunctions to       [7]. The space discretization is 
characterized by the size of the space grid    . The 
main benefit of this procedure follows from the fact 
that the discretization error here is given by:

which allows the optimization of parameters while 
keeping the error fixed. Using effective actions 
systematically improves this method (Fig. 1).
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FAST ROTATING BEC

Fast rotation of a BEC is a challenging subject from 
both experimental and theoretical point of view. 
Theoretically, it is expected that in the rapidly 
rotating setup the system will enter interesting 
modes, some of them closely related to the quantum 
Hall physics [8].  Experimentally, it is a delicate 
matter to achieve fast rotation and to keep the 
spatial confinement of atoms. In the recent  
experiment  [2], this problem was overcome by 
introducing an additional anharmonic part into the 
common harmonic trapping potential for the 
ensemble of                  87Rb atoms:

This type of setup has allowed fast rotating 
frequencies       . Following the analysis of this 
system as a rotating ideal Bose gas [3], we apply 
the presented general approach to the calculation of 
the condensation temperature Tc of the BEC in the 
fast-rotating anharmonic trap.

NUMERICAL CALCULATION

Within the grand-canonical ensemble the partition 
function of non-interacting bosons is given by

where             is the inverse temperature,    is the 
chemical potential, and  counts single-particle 
eigenstates.

The free energy can now be calculated as:

where               is a single-particle partition function.    
Condensation temperature is defined by imposing 
that there are no particles in the ground state,

while the average particle number is equal to the 
number of atoms in the experiment. In that case, 
the condensation temperature can be determined 
from the relation:

To this end we proceed as follows. For a range of 
rotation frequencies, we calculate a single-particle 
partition function as:

and a single-particle ground-state energy    as 
previously explained. Then we perform the 
summation and search for the value of     such that  
the defining relation holds. The numerical results are 
presented on Figs. 2, 3 and 4.

The obtained results are in good agreement with the 
semiclassical calculations [3]. In all the considered 
cases, the numerically calculated condensation 
temperature is slightly lower from the corresponding 
semiclassical value, in accordance with the known 
fact that the finite-size corrections always reduce the 
condensation temperature of bosons in harmonic 
traps [9,10]. 

ω⊥ = 2π × 64.8 Hz, ωz = 2π × 11.0 Hz, kexp = 2.6× 10−11 Jm−4.
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SUMMARY 
�We have successfully applied           approximation 
to the calculation of the condensation temperature of 
a BEC in a fast rotating anharmonic trap.

� The presented approach is ideally suited for the 
treatment of dilute Bose gases.

�We plan to extend this method to interacting Bose 
and Fermi systems.
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OVERVIEW

We apply the          approximation [1] for the efficient calculation of the condensation temperature of a rotating 87Rb 
Bose-Einstein condensate (BEC) in an anharmonic trap, realized in a recent experiment [2]. First, we briefly 
introduce the used approximation and discuss its advantages. Then we focus on the theoretical description of the 
experiment and on the numerical calculation of the condensation temperature. At the end, we compare our results 
with previous semiclassical calculations [3].
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Fig. 4: Plot of           vs.         for different rotation frequencies. In 
all cases               In the numerical calculations           effective 
actions were used. We use                   in all cases, with the 
appropriate number of particles. Solid lines represent semiclassical 
values from Ref. [3].
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Fig. 3: Plot of        vs.           for different rotation frequencies. In 
all cases              In the numerical calculations           effective 
actions were used. The horizontal line shows the number of 
bosons in the experiment                   From the graph we read off 
the condensation temperature                   for the experimental 
setup,            . Solid lines give semiclassical results from Ref. [3].  
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Fig. 1:  Deviations  from the exact ground-state energy 
vs.    for different levels of effective 

actions for        , with parameters                            The
error is      . The red curve is the discretization error

ω⊥ = Ω, k = 4, L = 3, ∆ = 0.2.
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Fig. 2: Values                             vs.      for the experimental setup,
. In the numerical 

calculations           effective actions were used. The horizontal line 
shows the number of bosons in the experiment,                  
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