Marija Mitrović

Introduction and motivationconnecting structure and dynamics

Model of multiscale (community) networks

Spectral properties

Conclusion

Modularity of networks from the perspective of spectral analysis

Marija Mitrović

Scientific Computing Laboratory Institute of Physics, Belgrade, Serbia

BIONET08

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Outline

Marija Mitrović

- Introduction and motivationconnecting structure and dynamics
- Model of multiscale (community) networks
- Spectral properties
- Conclusion

Introduction and motivation-connecting structure and dynamics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Model of multiscale (community) networks

3 Spectral properties

Multiscale structure of networks

Marija Mitrović

Introduction and motivationconnecting structure and dynamics

Model of multiscale (community) networks

Spectral properties

Conclusion

- Modular structure common properties of biological, social and IT networks.
- Connection between dynamics and stucture of network.

イロト 不良 とくほう 不良 とうほ

Network of networks

Marija Mitrović

Introduction and motivationconnecting structure and dynamics

Model of multiscale (community) networks

Spectral properties

Conclusion

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Model parameters α , P_o and M.

B.Tadić, Physica A 293,(2001). M. Mitrović and B. Tadić, LNCS, (2008)

Multiscale networks

Marija Mitrović

Introduction and motivationconnecting structure and dynamics

Model of multiscale (community) networks

Spectral properties

Conclusion

≜▶ ≣ ∽��(

Adjacency matrix

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Closer look at cliques on random tree

Marija Mitrović

- Introduction and motivationconnecting structure and dynamics
- Model of multiscale (community networks

Spectral properties

Conclusion

 Clique of size N has one eigenvalue equal
) ... = N = 1 and

$$\lambda_N = N = 1$$
 and $\lambda_1 = \ldots = \lambda_{N-1} = -1$

• Spectra of random tree with cliques contains information about number of cliques.

・ロット (雪) (日) (日)

Spectral density of adjacency matrix

Marija Mitrović

Introduction and motivationconnecting structure and dynamics

Model of multiscale (community) networks frequency

Spectral properties

Conclusion

Eigenvalues around $\lambda = 3$ and $\lambda = 5$ are related to existence of cliques of size N = 4 and N = 6.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Randomized networks

Marija Mitrović

Introduction and motivationconnecting structure and dynamics

frequency

Model of multiscale (community) networks

Spectral properties

Conclusion

Same degree distribution and average connectivity.

Power law degree distribution and same average connectivity.

・ロット (雪) (日) (日) (日)

Eigenvectors

Marija Mitrović

- Introduction and motivationconnecting structure and dynamics
- Model of multiscale (community) networks

Spectral properties

Conclusion

Eigenvector for eigenvalue $\lambda = 5.04$ is localized on cliques.

Eigenvalue $\lambda = 0$ is related to chain with odd number of nodes.

・ヨー・ヨー・ヨー・
 ・ヨー・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Looking at the dynamics-random walk

Marija Mitrović

Introduction and motivationconnecting structure and dynamics

Model of multiscale (community) networks

Spectral properties

Conclusion

Ranking of eigenvalues for networks with different *M*

・ロット (雪) (日) (日) (日)

Eigenvectors for Laplacian

Marija Mitrović

- Introduction and motivationconnecting structure and dynamics
- Model of multiscale (community) networks

Spectral properties

Conclusion

▲ロ▶▲圖▶▲≣▶▲≣▶ ≣ のQで

Eigenvectors for Laplacian

- Marija Mitrović
- Introduction and motivationconnecting structure and dynamics
- Model of multiscale (community) networks
- Spectral properties
- Conclusion

- The largest eigenvalue in spectra is equal 2 only for tree networks $(M = 1, \alpha = 1).$
- Eigenvalues $\lambda = 1$ are related with chains.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

Eigenvector for largest eigenvalue $\lambda = 2$ for tree of trees network.

Conlusion

Marija Mitrović

- Introduction and motivationconnecting structure and dynamics
- Model of multiscale (community) networks
- Spectral properties
- Conclusion

- We presented a model of multiscale networks and investigate spectral properties of adjacency matrix and normalized Laplacian.
- Spectral properties depend on global structure and structure of modules in networks.
- Eginevector of adjacency matrix and Laplacian operator contain information about the structure of networks.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Acknowledgments

Marija Mitrović

- Introduction and motivationconnecting structure and dynamics
- Model of multiscale (community) networks
- Spectral properties
- Conclusion

This work was done in collaboration with professor Bosiljka Tadić

イロン 不得 とくほ とくほ とうほ