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Abstract 
 
This paper investigates global and local properties of scale-free networks generated by the Barabasi-Albert 
model. Small world coefficient and clustering coefficient dependences on network size have been expanded 
to dependences on parameter m. Dependence of size three network substructure occurrences on network 
size and parameter m has been discovered. Counting of size three substructures occurrences for random and 
preferentially selected subset of nodes was investigated as a heuristic for grading same values on the level 
of the whole network. Random selection is found to be simpler, but less precise method. Formulas and 
coefficients for preferential selection are introduced and can be used for estimation of the number of size 
three network substructures for 1 ≤ m ≤ 8. 



 

Introduction 
 
Research of complex networks started in 1950’s with the development of graph theory. A simple 
realization, random network – Erdos-Renu (ER) model was used troughout the second half of 20th century. 
Random network represents a set of nodes connected to each other with a certain probability. 
 
Given a number of links per node (node degree) and number of nodes with k degree, degree distribution can 
be observed. Degree distribution P(k) gives the probability that a selected node has exactly k links. ER 
model has Poissonian degree distribution. 
 
Since 1999, degree distribution of real networks, such as the World Wide Web, the Internet, metabolic 
networks etc. [1] have been found to follow power-law, 

γ−kkP ~)( . 
These networks have been named scale-free (SF) networks. Their characteristic is a big number of low 
degree nodes and small number of high degree nodes. Scale-free networks have shown success in modeling 
social, biological, infrastructure and many other networks. 
 
This paper investigates global and local properties of undirected scale-free networks. 

 
Scale-free network generation and its parameters 
 
Barabasi-Albert (BA) model [1] is used for generation of undirected scale-free networks. This model starts 
from a small random network and imports new nodes into the network using preferential attachment. 
 
Random network is generated by connection of  nodes to each other with probability p. Probability for 
each pair of nodes’ link is equal to p. In every time-step a new node is introduced to the network, so after t 
time-steps the network size (number of nodes) is 

0n

0n t+ . Each new node is linked to m nodes from the 
existing network, thus the number of links is increased by m after each time-step. Preferential attachment is 
used, which means new node probability for linking with existing node k is proportional to its degree  

and is equal to 
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k
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, with  denoting the sum of degrees of all nodes in the existing network. 

Preferential attachment results in power-law degree distribution 

i
i

s∑

( )P k ck γ−=  (Figure 1). Values of γ  

coefficient obtained belong to the interval (2.50, 2.85). Most of real scale-free networks have ( ]2,3γ ∈ . 
 
Distance between two nodes represents the least number of links needed to make a path between the two 
nodes. Neighbor node has the distance one. 
 
Mean distance between all pairs of nodes in the network is called network radius or small-world 
coefficient. Radius dependence on network size is logarithmical [1] and can be fitted to the function 

lnr ry a b x= +  (Figure 2). 
 
Highly connected networks have small values of small-world coefficient. An example is the network of 
acquaintances with nodes representing people, linked if they have met each other. The radius of this 
network is (roughly) six. 
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Another important global network parameter is clustering coefficient. Clustering coefficient represents the 
mean ratio between existing and possible links in the set of a node’s neighbors and can be calculated as 

( )
1

1 / 2
i

i i

t
n s s −

 where n stands for network size,  for i-th node degree,  for number of links between 

i-th node neighbors. Clustering coefficient has power-law dependence on number of nodes in the network 
[1] and can be fitted to the function 

is it

cb
cy a x−=  (Figure 3). 
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Figure 1: Scale-free degree distribution P(k) fitted to the function y cx γ−=  is shown on log-log plot, 

c = 24,6(6), γ  = 2,74(2). The network size is n = 5.010, other parameters are  = 10, p = 0.5, m = 5. 0n
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Figure 2: Small world coefficient dependence on the network size fitted to the function lnr ry a b x= + , 

 = 1.07(2),  = 0.310(2). Network parameters are  = 10, p = 0.5, m = 4. Data on the plot are mean 
values obtained on four different networks. 

ra rb 0n
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Figure 3: Clustering coefficient dependence on the network size fitted to the function cb

cy a x−=  is shown 

on log-log plot,  = 8.87(2),  = 0.7362(2). Network parameters are  = 10, p = 0.5, m = 8. Data on 
the plot are mean values obtained on ten different networks. 

ca cb 0n

 
Value of m-parameter (number of links assigned to a new node) influences network connectivity and thus 
the values of small-world and clustering coefficients. Therefore,  

, ,r r ca b a ,  coefficients from previously mentioned functions are m-dependent. cb
 
For m≥2 new node attachment can result in creation of new contours, whereas for m=1 contours can’t be 
made. In further m-dependence investigation, case m = 1 is excluded, because of its specific influence on 
radius and clustering coefficient values.  
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Figure 4: m-dependence of   coefficient fitted to the function ra 1 2r ry a a x= − ,  = 1.305(5), 

 = 0.059(2). 
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Figure 5: m-dependence of   coefficient fitted to the function rb 3

1 2
rb

r ry b b x−= + ,  = 0.233(2), 

 = 0.434(3),  = 1.25(2). 
1rb

2rb 3rb
 
For same network size, connectivity increases with m-value growth which causes radius fall. This can also 
be observed within monotonic decrement of r(m) function coefficients, where r stands for radius. 
Dependence  fits best on linear function ( )ra m 1 2r ry a a x= −  (Figure 4), while  fits best on 

power-law function 

( )rb m
3

1 2
rb

r ry b b x−= +  (Figure 5). 
 
For same network size, clustering coefficient increases with m-value growth. Still, the inclination of c(m) 
dependence (where c represents clustering coefficient) on semi-log plot is same for all m values. Therefore 

 value can be approximated as constant (Figure 7) while cb ( )ca m  can be fitted to exponential function 
2

1
ca x

cy a e=  (Figure 6). 
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Figure 6: m-dependence of  coefficient fitted to the function ca 2

1
ca x

cy a e=  shown on semi-log plot, 

 = 3.7(1),  = 0.108(5). 1ca 2ca
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Figure 7: m-dependence of  fitted to the constant function – obtained value is  = 0.737(2). cb cb

Scale-free network substructures 
 
While last section investigates global scale-free network characteristics, this section looks at structural 
properties. 
 
Connected subset of nodes is called a substructure and it characterizes network on local level. Structural 
properties investigation in this paper is limited to size three substructures. Since all nodes in a substructure 
have to be connected (directly or indirectly), there are two types of size three substructures, triangle and arc 
(Figure 8). 
 

Number of triangles occurrences dependence on network size n is fitted to the function ( )ln tb
ty a x=  

(Figure 9). Number of arcs occurrences dependence on network size n is fitted to the function 
lnky a x x=  (Figure 10). Intuition for the types of functions was gained due to paper [3] which deals with 

substructures within directed networks. 
 
New node attachment for m = 1 can’t produce new triangles, therefore in this case number of triangles T is 
constant for all network sizes and equal to number of triangles in starting random network. Thus, for m = 1, 

 value is equal to zero and there is no point in evaluation of , because its value originates from 
random properties of starting network and has no relation with preferential attachment nor scale-free 
concept. 

tb ta

ARC TRIANGLE 
 

Figure 8: Types of size three substructures – triangle and arc. 
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Number of links in a network increases with m-value growth, therefore number of triangles and arcs grow, 
so there is an m-dependence of these two values. Dependence ( )ta m  can be fitted to the power-law 

function 3
1 2

ta
t ty a a x= +  (Figure 11). Dependence ( )tb m  is convergent and can be fitted to the 

function  (Figure 12). Dependence ( 2
1 1 tb

ty b x−= − ) 3tb
( )ka m  can be fitted to the power-law function 

3
1 2

ka
k ky a a x= +  (Figure 13). 
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Figure 9: Number of triangles dependence on the network size fitted to the function , 

 = 2.1788(6),  = 2.8152(2). Network parameters are  = 10, p = 0.5, m = 4. Data on the plot are 
mean values obtained on 100 different networks. 

( )ln tb
ty a x=

ta tb 0n
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Figure 10: Number of arcs dependence on the network size fitted to the function lnky a x x= , 

 = 9.5289(3). Network parameters are  = 10, p = 0.5, m = 4. Data on the plot are mean values 
obtained on 100 different networks. 
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Figure 11: m-dependence of  coefficient fitted to the function ,  = 0.75(1), 

 = 0.0295(8),  = 2.80(2). 
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Figure 12: m-dependence of  coefficient fitted to the function tb ( ) 3
2

1 1 t
t

bb
ty b x−= − ,  = 3,10(2), 

 = 1.4(1),  = 0.59(5). 
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Figure 13: m-dependence of  coefficient fitted to the function ka 3
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k ky a a x= + ,  = 0.44(5), 

 = 0.71(2),  = 1.84(2). 
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Network substructures heuristic estimation 
 
Last section deals with exact evaluation of size three substructure occurrences in scale-free network for 
variable network size and number of links attached to a new node. Exact evaluation requires counting of all 
triangles  and arcs  where i-th node is included, for each i. Number of all triangles T and arcs K in the 
network is evaluated as 

it ik

3
i

i

tT =∑ , 
3

i

i

kK =∑ . 

The question is: Can the number of triangles and arcs in the network be estimated by counting  and  
for only some nodes in the network? This would speed up the evaluation algorithm, especially in the case 
of large networks such as Internet and World Wide Web. 

it ik

 

In a subset S of n-size network nodes, q is defined as 
S

q
n
= . With calculation of  and  values for 

each i-th node from S, following values can be evaluated: 

it ik

3
i

q
i S

tT
∈

=∑ , 
3

i
q

i S

kK
∈

=∑ . 

By definition , .  and  quantities are defined as 100%T T= 100%K K= qt qk q
q

T
t

T
= , q

q

K
k

K
= . Values of 

 and  for various scale-free networks and differently chosen subsets S are examined in this section. qt qk
 
In the case of random selection of subset S (each node has the same probability 1/n to be included into S) 
intuitively , which is confirmed with following results. Values /qT d /qK be used 
as an estimation of values T and arcs K, which is shown on figures 14 and 15. Even though in most of the 
cases number of triangles/arcs varies from exact value for only a few percent, there are cases with greater 
distinction. Table 1 shows the maximal difference between the values /qT q  and well as /qK q  and 

q qt k= = q an  can 

, as 

q  

T

q
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K, for v wor  0.

q 20% 40% 60% 80% 

ariable values of q. Estimations are made for 410 -size net k with parameters 0n  = 10, p = 5, 
m = 1, 2,..., 8. Values represent mean value of 25 different results, cited with standard deviation. 
 

Triangle number distinction 15% 10% 5% 4% 
Arc number distinction 10% 6% 5% 4% 

 
able 1: Maximal error for numbers of triangles and arcs using random method estimation for different T

percentages q. 

 
Figure 14:  dependence on network size, for q = 80% randomly chosen nodes,  is shown o  the plot, /qT q n

as well as exact dependence T(n). Network parameters are n  = 10, p = 0.5, m = 4. T  values are mean 
values obtained on 25 different networks. 

0 q

 
Figure 15:  dependence on network size, for q = 60% randomly chosen nodes,  is shown on he plot, 

nce K(n). Network parameters are  = 10, p = 0.5, m = 6.  values are mean 
values obtained on 25 different networks. 

/qK q
as well as exact depende

 t

0n qK
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A better ap  can be made by taking into account scale-free network degree distribution. Subset S is 
chosen preferentially (i-th node has probability proportional t its degree is  to be inclu d into S). There is 

no intuitive approach to estimation of valu

proach
o de

es  and , thus they were i tigated. 

a

 qt qk nves
 
Results from last section show that n-dependence of number of triangles/ rcs, T(n) and K(n), can be fitted 

to the functions ( )ln tb
ty a x=  and k lny a x x= . Further on, obtained values of coefficients  i 

r various ne r ermined. In order to obtain  and 

,t ta b
 values

ka  

 for fo twork parameters a e considered det q q

preferential selection of subset S, dependences 

t k

( )qT n  and ( )qK n  are fitted to the functions 

( )lnq t
tby t a x=  and lnq ky k a x x= , where the values of coefficients ,t ta b ka  are taken from 

 

 i 
previous section. 

To illustrate superiority of estimation with preferential selection, figures 16 and 17 show n-dependences of 

q

q

T q

q

K
t

 and 
k

 for the same parameters as figures 14 and 15, which show estimations for random selection. 

 

Figure 16: q

q

T
t

act 

 dependence on network size, for q = 80% randomly chosen nodes,  is shown on the plot, as 

well as ex dependence T(n), = 0.958(2). Network parameters are  = 10, p = 0.5, m = 4.  values 
lue

ar  a

qt  0n  qT
are mean va s obtained on 25 different networks. 
 
Within a network with fixed parameters q-dependences of qt  and qk  e linear on log-log plot nd thus 

can be fitted to the functions t
ty xβα=  and k

k xβαy = ur  and 19). Values ofes 18  , , ,t t k kα β α β   (Fig
coefficients for different values of m are given within table 2. 
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Figure 17: q

q

K
k

 dependence on network size, for q = 60% randomly chosen nodes,  is shown on the plot, as 

well as exact dependence K(n),  = 0.7855(1). Network parameters are  = 10, p = 0.5, m = 6.  
values are mean values obtained on 25 different networks. 

qk 0n qK
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Figure 18: q-dependence of  coefficient fitted to the function qt t

ty xβα= , tα  = 1.03(1), tβ  = 0.27(2). 

Network parameters are  = 10, p = 0.5, m = 3. 0n
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Figure 19: q-dependence of  coefficient fitted to the function qk k

ky xβα= , kα  = 1.010(3), 

kβ  = 0.517(7). Network parameters are  = 10, p = 0.5, m = 7. 0n
 

m αt βt αk βk 
1 - - 1.01(2) 0.47(2) 
2 1.004(6) 0.224(7)  0.992(3) 0.469(3) 
3 1.03(1) 0.27(3) 1.012(2) 0.489(6) 
4 1.017(7) 0.28(2) 0.999(5) 0.49(1) 
5 1.025(6) 0.27(2) 1.015(2) 0.506(3) 
6 1.022(6) 0.28(2) 1.012(2) 0.514(2) 
7 1.010(6) 0.28(2) 1.010(3) 0.517(7) 
8 1.007(6) 0.27(2) 1.001(3) 0.49(2) 

Table 2: , , ,t t k kα β α β  values for different values of m parameter. 
 

Summary 
 
Global and local properties of scale-free networks are investigated within this paper. Barabasi-Albert 
algorithm, with m-degree new nodes, is used for generation of networks with power-law (scale-free) degree 
distribution. 
 
Small-world and clustering coefficient dependences on network size are expanded to dependences on 
m-parameter. 
 
Dependence of number of size three substructures (triangles and arcs) occurrences in the network on 
network size and m-parameter are found. 
 
Counting of triangles and arcs in randomly and preferentially selected subset are examined as heuristics for 
estimation of number of triangles and arcs in the whole network. Random selection is found as simpler, but 
less precise method. Formulas and coefficients for the method of preferential selection are found for 
m = 1,2,...,8 and an arbitrary size of subset S. 
 
These heuristics are especially useful for local characterization of large networks, because of the time 
reduction. 
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